
Architecture Framework for Trapped-Ion Quantum
Computer based on Performance Simulation Tool

by

Muhammad Ahsan

Department of Computer Science
Duke University

Date:
Approved:

Jungsang Kim, Supervisor

John Reif

Robert Calderbank

John Kubiatowicz

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2015

Abstract

Architecture Framework for Trapped-Ion Quantum Computer

based on Performance Simulation Tool

by

Muhammad Ahsan

Department of Computer Science
Duke University

Date:
Approved:

Jungsang Kim, Supervisor

John Reif

Robert Calderbank

John Kubiatowicz

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2015

Copyright c© 2015 by Muhammad Ahsan
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

The challenge of building scalable quantum computer lies in striking appropriate

balance between designing a reliable system architecture from large number of faulty

computational resources and improving the physical quality of system components.

The detailed investigation of performance variation with physics of the components

and the system architecture requires adequate performance simulation tool. In this

thesis we demonstrate a software tool capable of (1) mapping and scheduling the

quantum circuit on a realistic quantum hardware architecture with physical resource

constraints, (2) evaluating the performance metrics such as the execution time and

the success probability of the algorithm execution, and (3) analyzing the constituents

of these metrics and visualizing utilization of resources to identify system components

which crucially define the overall performance.

Using this versatile tool, we explore vast design space for modular quantum com-

puter architecture based on trapped ions. We find that while success probability is

uniformly determined by the fidelity of physical quantum operation, the execution

time is a function of system resources invested at various layers of design hierarchy.

At physical level, the number of lasers performing quantum gates impact the latency

of the fault-tolerant circuit blocks execution. When these blocks are used to con-

struct meaningful arithmetic circuit such as quantum adders, the number of ancilla

qubits for complicated non-clifford gates and entanglement resources to establish

long-distance communication channels, become major performance limiting factors.

iv

Next, in order to factorize large integers, these adders are assembled into modular

exponentiation circuit comprising bulk of Shor’s algorithm. At this stage, the overall

scaling of resource-constraint performance with the size of problem, describes the

effectiveness of chosen design. By matching the resource investment with the pace of

advancement in hardware technology, we find optimal designs for different types of

quantum adders. Conclusively, we show that using three million qubits, the 2,048-bit

Shor’s algorithm can be reliably executed in five months.

v

To my parents, my wife and all those who encouraged me to complete my disser-

tation

vi

Contents

Abstract iv

List of Tables xiii

List of Figures xv

Acknowledgements xviii

1 Introduction 1

1.1 Why Quantum Computation? . 1

1.2 Quantum Noise: The Main Enemy of Quantum Computer 3

1.2.1 How Noise Affects Correctness of Computation 3

1.2.2 Achieving Tolerance Against Noise 4

1.2.3 Resource Overhead in Fault Tolerant Quantum Computing . . 6

1.3 Quantum Computer Architecture . 8

1.3.1 Achieving Fault Tolerance in Quantum Architecture 10

1.3.2 The Trade-offs between Resource and Performance 11

1.3.3 Simultaneous Reduction of Execution Time and Failure Prob-
ability . 13

1.4 Performance Simulation and Modeling Quantum Computers 16

1.4.1 Why Performance Simulation? 16

1.4.2 Main Components of the Performance Simulation 17

1.5 The Contribution of the Thesis . 18

1.5.1 A New Performance Simulation Tool 18

vii

1.5.2 The Summary of New Research Problems 20

1.6 Summary . 23

2 Basics of Quantum Computing 24

2.1 Qubits . 24

2.2 Quantum Gates and Measurement . 27

2.2.1 Single-qubit Gates . 27

2.2.2 Multi-qubit Gates . 30

2.2.3 Quantum Measurement . 30

2.2.4 Classically Controlled Quantum Gates 32

2.2.5 Sample Quantum Circuit: Quantum Teleportation 33

2.3 Universal Quantum Computation . 34

2.4 Quantum Noise . 35

2.5 Fault-tolerant Quantum Circuits . 37

2.5.1 The Choice of Quantum Error Correcting Code 37

2.5.2 Hamming Code . 39

2.5.3 Quantum CSS Codes . 41

2.5.4 Stabilizer description of Steane code 43

2.5.5 Fault-tolerant gates in Steane code 46

2.5.6 Concatenated Quantum Error Correction 50

2.6 Summary . 59

3 Trapped-Ion Quantum Hardware 60

3.1 Introduction to the Trapped-Ion Quantum Computer 61

3.2 Architectures for Trapped-Ion Quantum Computers 63

3.2.1 Why quantum architecture? 63

3.2.2 Brief Survey of Trapped-Ion Quantum Computers 65

viii

3.2.3 Feasibility of Quantum Architecture 71

3.3 MUSIQC Hardware . 71

3.4 Architecture Support in MUSIQC Hardware 76

3.5 Summary . 77

4 Our Design and Performance Simulation Tool Box 78

4.1 Introduction to the Design and Performance Simulation 78

4.1.1 Motivation Behind the Simulation 78

4.1.2 Deficiencies in the prior tools 79

4.1.3 Unique features of our tool set 80

4.2 Brief Survey of Prior Tools or Infrastructures 81

4.3 Our Design and Performance Simulation Tool Box 84

4.4 Fault-Tolerant Circuit Generator . 86

4.5 Low Level Mapper . 88

4.5.1 Qubit Partitioning Problem Definition 89

4.5.2 Qubit Placement Problem Definition 90

4.6 Low Level Scheduler . 94

4.7 Low Level Error Analyzer . 97

4.8 Tile Database . 101

4.9 Quantum Application Circuit Generator 103

4.10 Brief description of basic Architecture model in ADPA 104

4.11 High Level Mapper . 105

4.12 High Level Scheduler . 106

4.12.1 Dynamic Resource Allocation in Cross-Layer Scheduling . . . 111

4.12.2 The Correctness and the Optimality of the Scheduler 111

4.13 High Level Error Analyzer . 113

ix

4.14 Performance Metrics Decomposer . 116

4.15 Visualizer . 118

4.16 Summary . 120

5 Performance Simulation based on Hardware Resources Constraints129

5.1 Motivation of Study . 130

5.2 Hardware, Architecture Model and Definitions 132

5.3 Tool Components and Overall Design Flow 134

5.3.1 Mapping . 136

5.3.2 Scheduling . 137

5.3.3 Quantifying Architecture Support for Fault-tolerance 140

5.4 Simulation of Bernstein-Vazirani Algorithm 140

5.4.1 Simulation Results . 143

5.4.2 Analysis of Resource Reduction 146

5.5 Discussions . 147

5.5.1 Tool Testing, Verification and Validation 147

5.5.2 Running Time and Scalability of the Tool 148

5.6 Summary . 151

6 Optimization of a Quantum Computer Architecture 153

6.1 Motivation of Study . 154

6.2 Quantum Hardware and Architecture Models 156

6.2.1 Quantum Hardware Model . 156

6.2.2 Quantum Architecture Model 157

6.2.3 Error Model and Baseline Device Parameters 159

6.2.4 Benchmark Application Algorithm 160

6.3 Tool Description . 160

x

6.4 Simulation Results . 162

6.4.1 Searching in the Architecture Space 164

6.4.2 Selecting an Architecture . 166

6.4.3 Improving Performance through Device Parameters 170

6.5 Summary . 172

7 Designing a Million-Qubit Quantum Computer 173

7.1 Motivation of Study . 174

7.2 Quantum Circuits Revisited . 176

7.2.1 Universal Quantum Gates for the Steane code 176

7.2.2 Benchmark Circuits . 178

7.3 Quantum Hardware and Quantum Architecture Models 183

7.3.1 Quantum Hardware Model . 183

7.3.2 Quantum Architecture Model 185

7.4 Tool Description . 189

7.4.1 Tool Validation and Performance 194

7.5 Simulation Results . 195

7.5.1 Resource-Performance Scalability 196

7.5.2 Resource-Performance Trade-offs 199

7.5.3 Performance Scaling under Limited Resources 202

7.5.4 Design Optimization by Tuning Device Parameters 204

7.6 Conclusion . 208

8 Conclusion and Future Work 210

8.1 Summary of Important Results . 210

8.2 Directions for Future Research . 213

8.2.1 Introducing Heuristics in Searching Design Space 213

xi

8.2.2 Mapping and Scheduling Algorithms 214

8.2.3 Support for Other Error Models 215

8.2.4 Improving Models of Physical Device Components 216

8.2.5 Support for Multiple Quantum Technologies 217

8.2.6 Support for Multiple Error-correcting Codes 217

8.3 Summary and Final Word . 218

A Bimodal Error Correction 219

A.1 Condition for Quantum Error Correction 220

A.2 Double Error Correction . 220

A.2.1 The [[3,1,3]] code . 221

A.2.2 Steane [[7,1,3]] code . 222

A.2.3 Bacon-Shor [[9,1,3]] code . 223

Bibliography 226

Biography 236

xii

List of Tables

1.1 Gate infidelity in various quantum technologies 4

2.1 Hamming Codewords . 42

2.2 Steane code Stabilizers . 44

2.3 Steane code error correction . 44

2.4 X and Z Error Propagation . 45

2.5 Transversal logic gates in Steane code 47

3.1 State-of-art trapped-ion performance numbers 63

4.1 Qubit Placement Algorithm Steps . 91

4.2 Updating Block Physical Failure Probability 124

5.1 Tabular data for Figures 5.4 and 5.5 for AvEPR=1 145

5.2 Tabular data for Figures 5.4 and 5.5 for AvEPR=7 146

5.3 Tabular data for Figure 5.6 . 147

6.1 L2 Tile performance numbers for chapter 6 162

6.2 The composition of total failure probability, chapter 6 167

6.3 Reducing failure probability in SA-Regime 169

6.4 Reducing failure probability in Tel-Regime 170

6.5 Effective Execution Time for modular exponentiation 170

7.1 Device Parameters (DPs) . 185

7.2 Composition of L2 Tile . 189

7.3 L2 Tile performance numbers chapter 7 192

xiii

7.4 The scaling of failure probability . 198

7.5 Breakdown of execution time and failure probability, chapter 7 198

7.6 Optimal architecture configuration, chapter 7 199

A.1 Double error syndromes for [[3,1,3]] bit flip code 221

A.2 Double X error syndromes for [[7,1,3]] code 222

A.3 Double Z error syndromes for [[7,1,3]] code 222

A.4 Gauge operators for [[9,1,3]] code . 224

A.5 Double X error syndromes for [[9,1,3]] code 225

A.6 Double Z error syndromes for [[9,1,3]] code 225

xiv

List of Figures

1.1 Architecture dependent Shor’s algorithm performance 7

1.2 The qubit fidelity with layers of concatenation 12

1.3 Simultaneous reduction of execution time and failure probability . . . 13

1.4 The philosophy of the toolbox . 20

2.1 The Bloch Sphere . 26

2.2 Commonly used single-qubit quantum gates 28

2.3 Commonly used multi-qubit quantum gates 29

2.4 Controlled-U gates . 29

2.5 Commonly used Measurement operators 32

2.6 Operator Measurement Circuit . 33

2.7 The Teleportation Circuit . 34

2.8 X and Z error detecting procedure 45

2.9 Non fault-tolerant vs fault-tolerant measurement 51

2.10 Encoding and Decoding of a 3-cat state 51

2.11 Encoding and Decoding of a 4-cat state 52

2.12 Encoding and Decoding of a 7-cat state 53

2.13 Steane Error Detection Circuit . 54

2.14 Fault-tolerant Steane |0yL preparation 54

2.15 Fault-tolerant circuit for the magic state T |�y 55

2.16 Fault-tolerant circuit to perform Steane T gate using magic state T |�y 56

xv

2.17 Fault-tolerant circuit to perform Steane Toffoli gate 57

3.1 Monolithic trapped-ion quantum hardware 65

3.2 Quantum Logic Array Architecture 66

3.3 Compressed Quantum Logic Array Architecture 68

3.4 Qalypso . 70

3.5 MUSIQC hardware . 72

3.6 Components of ELU . 72

3.7 Heralded Entanglement . 73

4.1 Overview of our design and performance simulation tool 85

4.2 Dependency Graph in Circuit Generators 87

4.3 Single Chain to Multi-chain Mapping 92

4.4 Qubit placement problem sample solution 93

4.5 Physical circuit graph . 94

4.6 Fault Counter Method . 99

4.7 High Level Mapper role demonstration 106

4.8 Optimality of the Scheduler . 107

4.9 Cross-Layer optimization . 124

4.10 Breakdown of execution time . 125

4.11 Sample visualization of scheduled AQFT circuit 126

4.12 Sample visualization of scheduled QRCA circuit 127

4.13 Sample visualization of scheduled QCLA circuit 128

5.1 MUSIQC architecture for Bernstein-Vazirani algorithm 132

5.2 Tool flow used in chapter 5 . 135

5.3 Bernstein-Vazirani Algorithm and hardware parameters values 141

5.4 Execution time as function of available ancilla qubits and lasers . . . 141

xvi

5.5 Success probability as function of available ancilla qubits and lasers . 142

5.6 Performance variation with entanglement resources 142

5.7 Tool runtime as function of ancilla qubits and lasers 149

5.8 Tool runtime as function of entangling ions 149

6.1 Quantum architecture for QCLA circuit 155

6.2 Tool flow used in second study . 163

6.3 Execution time as function of ancilla and communication Tiles 164

6.4 Failure probability variation with ancilla Tiles 167

6.5 Optimal architecture selection from SA- and Tel- regimes 168

7.1 Fault tolerant Toffoli gate . 179

7.2 Shor’s algorithm block diagram . 180

7.3 Fault tolerant controlled-rotation approximation 182

7.4 Architecture model used in chapter 7 186

7.5 Enhanced version of toolbox used in chapter 7 190

7.6 Tool Performance for various benchmark circuits 193

7.7 Resource-performance analysis of QCLA 195

7.8 Resource-performance analysis of QRCA 196

7.9 Resource-performance analysis of AQFT 197

7.10 Visualization of QCLA resource utilization 200

7.11 Performance scaling with the problem size 202

7.12 Reducing the failure probability of 2,048-bit QCLA circuit 208

xvii

Acknowledgements

Special thanks to the IARPA for funding the entire research, the committee members

for the general support, the advisor for the necessary guidance required throughout

this work.

xviii

1

Introduction

1.1 Why Quantum Computation?

Quantum computers can in principle efficiently solve certain practically important

problems (e.g., integer factorization) which are deemed intractable using conven-

tional computers. The quantum computation works in fashion similar to that of

currently prevalent method of computation (classical computation) which processes

the information stored in bits using sequence of instructions. The quantum bits

(qubits) store quantum data manipulated by sequence of quantum gates. However,

the computational advantage of quantum computation comes from the quantum me-

chanical properties of matter which include ‘superposition’ and ‘entanglement’. The

superposition allows quantum computer to process exponentially larger data space

than same size classical computer. In one time step, n-qubit quantum computer can

process data space whose storage and processing would require 2n classical bits and

hardware units. During the execution of quantum algorithm, this exponential data

space is tested for all possible solutions to the problem. However, in order to guide

computation to obtain correct solution, the data space is so modified as to efficiently

1

eliminate incorrect solutions. This can be achieved by the quantum mechanical prop-

erties of qubits. In contrast to their classical counterparts, qubits possess not only the

classical bit amplitude 0 or 1, but also the phase information exppiθq. These phases

can be adjusted so that false candidate solutions are canceled out by the interaction

among qubits through the application of quantum gates. The phase adjustment is

accomplished by quantum entanglement which allows qubit to communicate both

amplitude and phase information across each other. Once desired phase adjustment

is obtained, data space is collapsed to correct solution which is readout as a last

step of quantum algorithm. In general perfect cancellation of incorrect solutions is

not possible due to either imperfect phase adjustment or the nature of the problem.

In those cases quantum algorithm can be repeated multiple times to increase the

probability of obtaining correct result. The computational speed of the quantum

computer lies in its ability to efficiently span exponentially large data space using

superposition and apply entanglement to help shrink this space to the correct solu-

tion. Both these tasks manipulate qubits amplitude and phases through appropriate

sequence of quantum gates at every time step. The Shor’s factorization quantum

algorithm Shor (1997) is a prime example wherein this entire manipulation can be

carried out in polynomial number of time steps which makes this algorithm run

exponentially faster than its classical counterparts. Since the running time of an al-

gorithm is described as a function of problem size, the difference between polynomial

and exponential running time is far greater for larger size problems. In this sense

we expect quantum computers to be useful in solving very large size problems which

are prohibitively time expensive when attempted to be solved on classical computer

systems. Hence, building scalable quantum is the main challenge in this field through

which we can demonstrate practical supremacy of quantum computation. The goal

of this thesis is to quantitatively evaluate the magnitude of this challenge and to

provide concrete guidelines to solve this fundamental open problem.

2

1.2 Quantum Noise: The Main Enemy of Quantum Computer

1.2.1 How Noise Affects Correctness of Computation

For quantum algorithm to be practically useful, quantum computation needs to be

implemented on a piece of hardware which has quantum mechanical properties. Sev-

eral quantum technologies have been proposed to date Ladd et al. (2010b), however

the physical implementations of quantum memory and operations in any technol-

ogy are imperfect due to noisy quantum hardware Unruh (1995); Bacon (2003);

Zurek (2003); Schlosshauer (2007); Mazzola et al. (2010). The qubits are fragile and

quantum gates are unreliable. The qubits quickly begin to lose stored information

with the passage of time due to insufficient isolation from the noisy environment,

while the execution of quantum gate is inaccurate due to the incomplete control over

qubit manipulation methods even in the state-of-art technology. The rate at which

the qubit loses its information is called ‘decoherence rate’, while the reliability of

quantum operation is described by the ‘failure probability’ or ‘infidelity’ quantifying

the imperfection involved in carrying out intended operation. Several experimental

methods have been proposed to quantify the decoherence rate and infidelity Blume-

Kohout (2010); Schwemmer et al. (2014); Shabani et al. (2011). The Table 1.1 shows

the state-of-art fidelities of quantum gates reported for various quantum technolo-

gies. Clearly these values are too high for lengthy quantum computation containing

more than thousands of quantum gates. Furthermore, as qubits interact with each

other during computation, the noise can easily spread from infected qubits to the

non-infected qubits. The magnitude of the accumulated noise becomes significantly

higher and begins to interfere with the superposition and entanglement operations of

quantum algorithm. Consequently, the probability of obtaining correct solution be-

comes significantly lower which compromises the correctness of computation. More-

over, greater the size of computation, larger the amount of accumulated noise and

3

Table 1.1: State-of-art range of gate infidelity reported for various quantum tech-
nologies

Quantum Technology Infidelity Reference

Trapped-ion 10�6 - 10�3 Kim (2014)
Superconductor 10�4 - 10�3 Barends et al. (2014)
Neutral Atoms 10�3 - 10�2 Han et al. (2014)

Photons 10�2 - 10�1 Crespi et al. (2011)

higher the probability of quantum algorithm failing. Therefore the noise on one hand

neutralizes the proficient features of quantum computation, on the other hand, it im-

pedes the scalability of computation. Therefore, during the execution of quantum

algorithm, adequate preventive measures are required to facilitate scalable quantum

computation.

1.2.2 Achieving Tolerance Against Noise

In the battle against noise, sophisticated mechanism are devised which guard both

quantum information and computation. The quantum information stored on single

qubit is protected by encoded into multiple qubits (called physical qubits) using

suitable error correcting code. The resulting encoded block of qubits is called ‘logical

qubit’. The logical qubit provides significantly higher robustness to noise as long as

the number of noise corrupted qubits in the block are fewer than certain threshold

(also known as the code distance for a range of known error correcting codes). These

erroneous qubits can be detected and corrected for errors using well-known ‘quantum

error correction’ procedures Shor (1995); Laflamme et al. (1996); Calderbank and

Shor (1996); Steane (1996); Kitaev (2003) which act as shield against noise.

The basic principle of a large set of quantum error correction is derived from

classical error-correcting codes, wherein, logical qubit corresponds contains classical

codewords in superposition while the erroneous bit(or qubit) location is determined

by the sequence of parity checks or syndrome measurement. There are two impor-

4

tant difference which make the design of quantum error correcting codes (QECC)

challenging Nielsen and Chuang (2000). First, quantum information needs to be

protected not only from classical bit (amplitude) flips but also from phase flip errors

since qubit has both amplitude and phase as discussed earlier. This demands careful

construction of logical qubit state from classical codewords. Second, In the classical

error detection procedure syndrome extraction is usually trivial since, the bits of the

codewords can be directly compared without affecting the codeword itself. However

in case of quantum computation, this is far more complicated since qubits states

cannot be directly compared without modifying logical qubit! unless qubit state is

first copied or saved before the comparison is performed. Unfortunately, quantum

mechanics forbids qubit state to be copied to another due to the ‘no-cloning theo-

rem’ Wootters and Zurek (1982). Can we devise an error detection procedure which

can extract syndrome while stabilizing the logical qubit state? Fortunately, this can

be achieved by allocating a set of helping qubits (called ancilla qubits) and assign

them an special state. Ancilla qubits interact with logical qubit using sequence ap-

propriate entangling quantum gates. Their initial state is so designed that ancilla

qubits can extract error information from the logical qubit without destabilizing it.

Designing these special ancilla qubit state and finding their concise description is

a major milestone in the area of quantum error correction and generally described

by ‘stabilizer formalism’ Gottesman (1997). The investigation of various QECC and

their properties is a vibrant topic in the field and invites several expertise from the

field of information theory.

To protect computation, quantum gates must be also be implemented in some

‘encoded’ procedure. This is achieved by ensuring that gates are applied without de-

coding the encoded logical qubit(s). Such a gate is called ‘logical gate’. The logical

gate should preserve the logical sense of desired operation on the logical qubit(s). It

involves several constituent (physical) gates operating on the physical qubits of the

5

operand logical qubit(s). These constituent gates can potentially spread errors due to

the interactions among qubits. Given that the spread of noise is carefully controlled,

the logical gate provides sufficiently higher protection against noise when followed by

error correction to correct erroneous qubits resulting from imperfect physical gates.

Hence there are two important consideration while designing a logical gate (1) it

should realize to the intended operation on the logical qubit operands (2) it should

restrict the spread of errors within the encoded block of logical qubit such that these

errors can be corrected by the error correction procedure. These requirements are

met by applying a special set of physical gates depending upon the chosen error

correcting code and the intended logical gate. A logical gate fulfilling these require-

ments is called fault ‘tolerant quantum gate’. The fault-tolerant execution for some

quantum gates only requires bit-wise application of physical gates on the constituent

qubits of the logical qubit block. However, for certain gates which typically arise in

interesting application such as Shor’s algorithm, the fault tolerant construct is non-

trivial. In those case fault tolerance requires preparation of special ancilla qubit state

which becomes resource and time consuming. In a large scale quantum computation

tolerance against noise is achieved when error correction is applied between sequence

of logical gates. Logical gates suppress the spread of errors which are eliminated by

the subsequent error correction.

1.2.3 Resource Overhead in Fault Tolerant Quantum Computing

Fault tolerance is an essential ingredient of achieving scalable quantum computation

with adequate reliability. However, the price paid in executing quantum algorithm

fault tolerantly includes large number of (1) physical qubits to encode quantum in-

formation in logical qubits (2) physical gates to perform error correction and logical

gates. The performance of quantum algorithm depends on the overhead of hardware

resources required to realize these constituent qubits and physical gates. By invest-

6

Figure 1.1: (Included with the permission of Ref. Van Meter et al. (2006)) For
various quantum architectures, the execution time of Shor’s integer factorization al-
gorithm is plotted against problem size and compared with that of best known classi-
cal Number Field Sieve (NFS) algorithm for integer factorization. The acronym AC
stands for arbitrary connectivity (no architecture constraints), NTC for the nearest-
neighbor and BCDP for the more realistic architecture Beckman et al. (1996a) for
the modular exponentiation part of the Shor’s algorithm.

ing more qubits we can not only expedite the process of extracting the erroneous

qubits but also construct larger encoded blocks which can recover from more erro-

neous qubits. When sufficient resources (qubits) are available, higher performance

can be achieved since the total execution time (synonymously used with ‘latency’ in

this thesis) required to obtain correct result from quantum algorithm will be short.

The quantification of trade-offs between performance gains resource investment for

different types of quantum algorithm is an interesting open problem which has re-

sulted in appreciable contribution to the field. A set of some interesting results have

been reported in Ref Suchara et al. (2013a).

7

1.3 Quantum Computer Architecture

In order to be practicable, fault tolerance should ensure that quantum algorithm

can be executed on realistic noisy hardware with various types of constraints. When

applications are mapped onto the physical device, the constraints imposed by the

characteristics of the hardware can adversely affect the performance of algorithm.

One of the main performance-deciding factor is the efficiency of qubit-qubit interac-

tion. Qubits need to communicate with each other to allow for quantum mechanical

interaction accomplished by multi-qubit gates in the algorithm and fault tolerant

protocols. Many quantum device technologies only allow hardware architecture to

enable interaction among qubits located in the vicinity. These are called nearest

neighbor systems. However, as the number of qubits increase in a scalable quantum

system, the physical locality among qubits is inevitably compromised and nearest

neighbor architecture will become infeasible unless additional mechanism of commu-

nication or resources are provided. The interaction among qubits located far apart in

the hardware imposes a generic challenging problem due to the no-cloning theorem.

The qubit information cannot be copied and therefore cannot be transmitted by the

classical wire. Fortunately, there are several alternative mechanisms for the transfer

of quantum information. In some technologies it is possible to physically transported

qubit from one physical location to another to ‘move’ quantum information across

the system. However, there are general quantum mechanical methods in which qubit

information can be ‘swapped’ or ‘teleported’ Bennett et al. (1993) to another with

the help of extra qubits dedicated for communicated purposes (called communication

qubits). These methods which facilitate non-local qubit communication are indepen-

dent of chosen device technology. This means that for any quantum hardware we

can architect ‘quantum channels’ using quantum swapping and teleportation at the

cost of communication qubits overhead. The allocation and placement of these ad-

8

ditional qubit resources in the hardware are part of the general problem of designing

a quantum computer architecture. The hardware constraints which define quantum

architecture play vital role in estimating the overall performance of the quantum al-

gorithm and its speedup over its classical counterpart. The dependence of the Shor’s

algorithm execution time on the choice of architecture is shown in Figure 1.1.

An important consideration in quantum architecture is the support of fault toler-

ance. The allocation of ancilla blocks for error correction and fault tolerant quantum

gates crucially determine the ability of system to combat noise buildup which in turn

affects the overall performance. During the execution of quantum algorithm, these

ancilla blocks are continuously consumed by logical qubits as part of fault tolerant

protocols. The distribution of these blocks among logical qubits for consumption is

another example of architecture choice. We can architect a system in which each

logical qubit is assigned dedicated fixed sized ancilla block Metodi et al. (2005).

In this architecture the speed of executing quantum algorithm fault tolerantly is

achieved at the cost of large number of physical qubit resources and size of the hard-

ware. Alternatively, one can design a system which allows the sharing of variable

size ancilla blocks Thaker et al. (2006) among logical qubits by compromising the

parallelism in the quantum algorithm. In this case the algorithm can be executed

with fewer physical qubits. However, the resource efficiency comes with the price

of increased execution time Thaker et al. (2006). Once basic support for the fault

tolerance is ensured, the architecture for connecting different blocks of ancilla and

logical qubits needs to be specified. The bandwidth of communication across differ-

ent types of blocks depends upon (1) architecture of ancilla blocks (2) the placement

and (3) connectivity patterns application level logical qubits specified by quantum

algorithm. Bandwidth may also depend on area dedicated for the physical trans-

portation of qubits across the hardware if permitted by the device technology. The

performance of the scalable quantum system critically depends upon the bandwidth

9

of chosen communication channels. Higher bandwidth can deliver better perfor-

mance since the latency of communication among qubtis can be reduced. However,

increased bandwidth entails investment of communication qubits or area in the hard-

ware which leads to the similar resource-performance trade-offs observed in the design

of ancilla blocks. Conclusively, the study of fault tolerance and connectivity aspects

of the architecture necessarily involve trade-offs between auxiliary resources (ancilla

or communication qubits) and the performance. The detailed investigation of these

trade-offs, the quantification of performance and resource consumption for range of

architecture types comprise interesting open problems addressed in this thesis.

1.3.1 Achieving Fault Tolerance in Quantum Architecture

One of the main significance of analyzing resource-performance trade-offs is the quan-

tification of architecture resources requirement for a practical scalable system exe-

cuting quantum algorithm fault tolerantly. If the architecture is not taken into con-

sideration, the rough estimate of physical resources can be derived by the quantum

threshold theorem Aharonov and Ben-Or (1997) when the noise level in the device

components, the target reliability of quantum algorithm (described by the proba-

bility of its (un)successful execution) and the size of the its circuit is known. The

quantum algorithm circuit containing ppnq gates will fail with probability at most

ε, requires the resource overhead which scales poly-logarithmically in ppnq
ε

given that

each physical gate execution fails with probability less than pth. This remarkable

result is called quantum threshold theorem which promises that resource overhead

is smaller compared to the gain in the accuracy of algorithm if noise per quantum

gate is below certain threshold. When threshold condition (p pth) is met, mul-

tiple layers of encoding per logical qubit are used to make inaccuracy arbitrarily

small by as ε � ppnqpcpq2k{c where c ¡ 1{pth and k is the number of encoding layers

(called concatenation levels). A large set of QECC which are termed as concatenated

10

quantum codes feature multiple layers of encoding. For distance-3 Steane [[7,1,3]]

code Steane (1996) which can correct arbitrary single qubit error, the impact of

multiple layers of encoding on the qubit fidelity is shown in Figure 1.2. With the

addition of the concatenation layer, the number of correctable error events increases

due to the higher code distance. However, it is important to note that the effect of

increasing code distance can be simulated by ways other than concatenation, for ex-

ample, by directly using higher distance or more famous topological quantum codes

Kitaev (2003). The threshold values for the variety of error-correcting codes fall into

the range 10�5 to 10�2 depending upon the structure of code and/or resource in-

vestment Aliferis et al. (2005). Compared to the concatenated codes, the topological

codes provide superior shield against noise at the cost of significantly large number

of simultaneous operations per parity check in one round of error correction. A re-

alistic hardware architecture which can support such computational load seems to

be difficult to realize in practice. Therefore in this thesis we focus on concatenated

codes only. Nevertheless, for both concatenated and topological codes, several quan-

tum computer architectures Metodi et al. (2005); Van Meter et al. (2008); Whitney

et al. (2009); Kim and Kim (2009); Monroe et al. (2014); Galiautdinov et al. (2012);

Fowler et al. (2012a) have been proposed which support fault tolerance execution of

quantum application.

1.3.2 The Trade-offs between Resource and Performance

Even through the quantum threshold theorem provides hope for the scalable fault

tolerant quantum computation, it makes very simplified assumptions about the quan-

tum hardware and architecture. These are derived from the basic principle that by

applying error correction at regular intervals, time scale over which qubit acquires

errors is much longer than the time taken to correct for those errors. Hence the

theorem requires that (i) hardware supports large number of parallel quantum gates

11

Figure 1.2: The impact of multiple layers of encoding on the qubit fidelity. The
coherence time is assumed to be 10s, gate failure probability is taken as 10�5 which
is slightly less than the threshold of Steane code used for error-correction.

(ii) large supply of ancilla blocks is available in the architecture (iii) the qubit com-

munication cost is negligible. These assumption ensure that errors accumulated in

the logical qubit during logical gates or due to decoherence are very few, and there-

fore, correctable in the upcoming round of error correction. Unfortunately, these

assumptions may not hold in a realistic quantum system architecture which can only

supply limited hardware resources (parallel operations support, ancilla and commu-

nication qubit). Such constraints adversely affect the capacity of system to suppress

noise. When concurrently executable components of error correction circuit are seri-

alized due to the constraints or insufficient resources, the decoherence errors add up

faster than are corrected. The performance of an architecture built on limited hard-

ware resources will be significantly worse than the one assuming unlimited resources.

12

Figure 1.3: Design optimization by reducing both execution time and the failure
probability of 2,048-bit Quantum Carry Look-Ahead Adder Draper et al. (2006). A
set of original designs contains 1.5 million qubits with gate latency set to baseline
values. On the other hand, a set of tuned designs contains 2.85 million qubits along
with 10x reduction in the infidelity of communication channels and baseline latency
of certain gates. Dotted arrows show how different original designs were tuned to
allow simultaneous reduction in both execution time and failure probability.

Therefore, in the presence of architecture description quantum threshold theorem

cannot adequately quantify the relationship between performance and resource over-

head. For desired performance level, the theorem provides very optimistic resource

estimate which can be used as initial guidance for the system design. The actual

resource requirement will be significantly higher to satisfy more stringent fault tol-

erance requirement imposed by the practical quantum hardware. For accurate and

quantification of resource-performance trade-offs, the fault tolerant quantum algo-

rithm should be simulated on the hardware with realistic constraints.

1.3.3 Simultaneous Reduction of Execution Time and Failure Probability

The quantum threshold theorem guarantees the gain in reliability at the cost both

additional qubits and gates executed in the fault tolerant procedures. Executing

more gates increases the overall execution time which is a general price paid for the

13

decreased failure probability of the quantum algorithm. Ideally we want to not only

reduce the failure probability to increase robustness against noise but also minimize

the execution time to retain the speedup offer by the quantum computer as shown

in Figure 1.1. When quantum algorithm is mapped onto the physical device, the

hardware constraints begin to define the overall performance of application. In this

subsection we reason that the goal of simultaneous reduction in the latency and

unreliability becomes a task of finding suitable computer design by taking into the

consideration both the nature of quantum hardware and the description of architec-

ture.

In the quantum architecture study the efficacy of design is tested by the yard-

stick of evaluation metrics which should be adequately defined. One such metric

is defined as Area Delay-to-Correct Result (ADCR) Whitney et al. (2009) which is

the product of physical area occupied by the quantum computer and the ‘effective

execution time’ of the quantum algorithm. The physical area captures the total

qubit resources allocated for computation and communication while, effective exe-

cution time which is obtained by dividing the actual execution time by the success

probability (� 1�failure probability), describes the number of times quantum algo-

rithm may be repeated in order to obtain the correct result. In order words, the

effective execution time is a time to the successful execution of quantum algorithm.

Based on the definition of ADCR metric, an ‘optimal’ quantum computer design

is one which minimizes the product of effective execution time and the area of the

quantum hardware.

The utility of ADCR lies in generating holistic characterization for the design. It

lumps fundamental evaluation metrics by assigning same weight cost to the perfor-

mance (execution time and failure probability) and resource variables (area or total

qubits). However, as quantum hardware technology continues to evolve, these costs

may change over time leading to different specification of constraints across various

14

metrics. Moreover, in order to achieve desired level of performance within the con-

straint of resource budget we require deeper insights into the resource utilization

patterns and the performance limiting factors. Due to these reasons we believe that

it is more beneficial to decompose ADCR back into the fundamental metrics and

study their complicated interrelationship in a more general and flexible framework of

resource-performance trade-offs. The main advantage of this analysis strategy lies in

evaluating the sensitivity of performance metric to the specific component of design

which can be tuned to control the amount of performance gain.

One of the most crucial merit of our approach is the ease of simultaneously reduc-

ing the execution time and failure probability. These metrics are shown as scatter

plots in Figure 1.3 where each point is associated with specific design (parametrized

by the variables of architecture and device hardware) of a quantum computer to

execute 2,048-bit Quantum Carry Look-Ahead Adder (QCLA) circuit Draper et al.

(2006). The original designs are restricted to contain no more than 1.5 million qubit

resource and the performance (e.g., execution time and failure probability of physical

qubits and gates) of physical hardware assigned baseline values. These designs are

tuned by doubling the qubits and applying 10x reduction in the infidelity of com-

munication channel and the baseline latency of selected physical operations. The

dotted arrows in the plot show that tuned designs provide reduction in both ex-

ecution time and the failure probability. In chapter 7 we use this analysis show

that by lowering failure probability close to 10�9 and execution time to less than

0.8 seconds, 2,048-bit Shor’s algorithm can be successfully executed in less than five

months. This remarkable result was obtained by identifying crucial parameters of

quantum computer whose tuning is responsible for the simultaneous improvement

in both execution time and the failure probability. These valuable insights into the

design space were obtained from our versatile performance simulation software tool

which extracts performance limiting factors and patterns of resource consumptions.

15

The construction and the components of our tool to study quantum computer design

space are detailed in chapter 4.

1.4 Performance Simulation and Modeling Quantum Computers

1.4.1 Why Performance Simulation?

Complete simulation a quantum circuit containing n � qubits, entails tracking 2n

complex numbers describing the hilbert space spanned by the superposition (and

entangled) states of the qubits. It is clear that as quantum system scales, com-

plete simulation becomes quickly infeasible due to the exponential scaling of states

in the number of qubits. For certain quantum circuits in which the qubit state af-

ter each gate is describable by stabilizer formalism, we can evade this exponential

tracking Gottesman (1997). Even though the set of such circuit is very small, some

of them are widely used in quantum error correction as described in chapter 2. In

general for practically interesting quantum circuits such as Shor’s algorithm, the full

scale simulation becomes impractical due to the exponential scaling of the run time

when quantum computation is simulated on the conventional computers. The fact

that we cannot efficiently simulate a quantum algorithm on classical computer makes

quantum computer exclusive choice for certain vital application. Nevertheless, quan-

tum circuit simulation is an inefficient choice for investigating resource-performance

trade-offs.

Alternatively, if we are only interested in the performance of the quantum cir-

cuit, we can utilize the concept of efficient ‘performance simulation’ to obtain the

intended performance estimates. There are two main tasks of a performance simu-

lation software tool. First, it generates model of quantum circuit components and

hardware technology and the architecture. These models are typically described by

set of parameters. Second, it simulate these models to extract resource and per-

formance estimates. The advantage of these tools lies in efficient simulation of the

16

models which are described by a small set of parameters. At the same time the esti-

mates provided by the tool are fairly accurate since the model parameters are derived

from the well known physical properties of the quantum hardware, and experimental

efforts to build quantum computers. One of the main use of such tools is to guide

these efforts in the right direction.

1.4.2 Main Components of the Performance Simulation

Before estimates can be computed performance simulation tool also perform addi-

tional preliminary tasks of graphing fault tolerant quantum algorithm on hardware.

This includes ‘mapping’ and ‘scheduling’. The mapping involves assigning physical

resource to the qubits in the circuit. The scheduling generates hardware protocol

and correct time instances at which of quantum gates are applied. The generated se-

quence of physical gates should abide by the gate-level dependencies described by the

actual circuit. Both tasks should be performed respecting the hardware constraints

and limited resources which make mapping and scheduling non-trivial problems.

Once circuit execution is pictured on the hardware, performance simulation can be

carried out to compute the resource investment, total execution time and the overall

failure probability of algorithm. The resource estimate can be obtained at the time

of mapping qubits to the hardware. The execution time can be obtained from the

description of completely scheduled circuit. The failure probability is evaluated by

using detailed fault tolerance analysis of the scheduled circuit. A set of noteworthy

efforts to build such tools (see chapter 4 for details) can be found in Refs. Svore et al.

(2006a); Balensiefer et al. (2005a); Whitney et al. (2007); Balensiefer et al. (2005b);

Whitney et al. (2009); Fowler et al. (2012a).

17

1.5 The Contribution of the Thesis

1.5.1 A New Performance Simulation Tool

In this thesis, we present a performance simulation tool which fulfills the deficiencies

in the similar set of tools reported in the prior studies. In addition to mapping,

scheduling, our tool features unique capabilities to

• simulate performance over varying hardware technology parameters

• allow dynamic resource allocation by changing architecture parameters

• facilitate variable resource allocation (ancilla or communication qubits) across

different layers of encodings (cross-layer optimization)

• build sophisticated models to simulate fault tolerance and analyze failure prob-

ability of the quantum algorithm (advanced error analysis methods)

• provide detailed breakdown of resource and performance metrics

• enable visualization of resource utilization over a range of benchmark applica-

tions.

Using these additional flexibilities, the deeper insights into resource-performance

trade-offs can be obtained as shown in Figure 1.4. By varying technology, architec-

ture and resource parameters, we can search very large design space for the quantum

system. It can simulate variety of architectures to search for the optimal design

for given quantum algorithm. The breakdown of metrics reveals the performance

limiting factors in the design while the visualization enhances our understanding of

resource utilization during the execution of quantum algorithm. Similarly, by match-

ing resource allocation to the fault tolerance needs of each encoding layer, the opti-

mization is benefited from additional degree of freedom in the design space. Finally,

18

the tool offers advanced error analysis method to compute the failure probability

of different components of quantum circuit. By virtue of these features, our tool

makes substantial contribution towards the area of quantum computer performance

simulation.

With this tool we simulate different benchmarks quantum circuits on the trapped-

ion based computer architecture. The trapped-ion Cirac and Zoller (1995) is one of

the most promising candidate technologies has several desirable properties needed

for scalable quantum computer, which are described in chapter 3. Several types of

baseline architectures were analyzed through which the impact of varied resources

allocation on the performance were studied. The benchmark circuits range from sim-

ple four qubit Bernstein-Vazirani Bernstein and Vazirani (1993a) circuit to sizable

thousands of qubits quantum adders Draper et al. (2006); Cuccaro et al. (2004) and

quantum fourier transform Kitaev (1995). The tool went through several stages of

development. The initial version which could simulate small circuits (around 1,00

qubits and 1,000 gates) on a small-scale hardware was gradually evolved to handle

fairly large sized circuits (between 105 � 106 logical gates) on scalable hardware.

Through different phases of tool enhancement, the mapping, scheduling and perfor-

mance analysis techniques and were gradually improved according to the increasing

complexity of advanced architecture. During each phase, the specific problem within

the context of resource-performance trade-offs analysis was systematically defined.

The insights gained from the results of one set of analysis were used to increase the

scope of next set of problems. By progressively constructing towards more meaning-

ful questions, the thesis culminates by estimating the performance of the largest size

Shor’s algorithm which can be executed with limited number of physical qubits.

19

Figure 1.4: The philosophy of our flexible toolbox. It offers ‘knob’ for the fine
tuning of various system parameters and ‘magnifying glass’ to obtain deeper insights
into the system performance

1.5.2 The Summary of New Research Problems

We conclude this chapter by providing brief description of the specific problem ana-

lyzed in the thesis. The rest of the thesis is an exposition of the main ideas developed

in this chapter. These summary of three important research problems considered in

our work is follows:

The Hardware Constraints Impact on the Fault Tolerance

By simulating four-qubit Bernstein-Vazirani Bernstein and Vazirani (1993a) circuit

on a small trapped-ion architecture, the impact of limited hardware resources on the

performance was analyzed. The foundation of resource-constraint based mapping

and scheduling was laid and used for the study, while basic error analysis tech-

nique was employed to measure the overall level of the fault-tolerance. The results

showed how limited resources adversely affected the performance and that the grad-

ual performance-degradation trend suddenly became sharper as resource reduction

reached maximum limit. However, there was a plateau spanned by resource space,

where acceptable performance levels were maintained. In that region, we could

20

choose our performance level by trading one type of hardware resource with an-

other. It was also shown that chosen baseline architecture allowed higher gain in

performance than the corresponding increase in resource investment. This result

encouraged us to investigate the performance of larger size benchmark circuits when

executed on this scalable architecture. The chapter 5 provides details of this study.

Optimizing the Performance of Benchmark by Tuning Architecture and Device pa-
rameters

A careful observation reveals that constraint variables in previous problem can be

divided into two main categories: (1) Device parameters describe the physics quality

of hardware technology (2) Architecture parameters signify the amount of physical

resources available supplied in the hardware. This division was found particularly

useful while optimizing the scalable architecture for a meaningful size benchmark

circuit. We chose to study the quantum adder circuit which is the building block of

the modular exponentiation Van Meter and Horsman (2013); Vedral et al. (1996a);

Beckman et al. (1996b) comprising bulk of Shor’s algorithm. A method was proposed

to systematically improve the performance of 1,024-bit Quantum Carry Look-Ahead

Adder (QCLA) Draper et al. (2006) by stepwise tuning the performance constricting

parameters. First, architecture space was thoroughly analyzed and partitioned into

the subspaces. Each subspace was labeled by the dominant performance limiting ar-

chitecture parameter (number of ancilla or communication blocks). By varying this

parameter, the subspace produced the ‘best’ design for which further performance

improvement was possible only by adjusting device parameters. The qubit deco-

herence time emerged as the most critical device parameter common to all selected

designs. A slight improvement in this parameter was sufficient to reliably execute

1,024-bit modular exponentiation circuit. The details of this analysis are provided

in chapter 6. A natural extension to this study was to investigate the applicability

21

of given method of optimization to the variety of benchmarks quantum circuits, in

particular those used in the Shor’s algorithm.

Designing a Million-qubits Quantum Computer

The performance simulation tool was equipped to handle multiple benchmarks to be

mapped and scheduled over highly reconfigurable architecture. The proposed archi-

tecture contained varying number of computation and storage units to match the

resource requirement of different application. The scalability of such flexible sys-

tem was validated when optimal designs found for increasing size of a benchmark,

produced desired level of performance. In this study, the scalability of an archi-

tecture for various applications was throughly quantified using three different types

of benchmarks circuits sufficient to implement Shor’s algorithm. These include two

vastly different types of adders which included the logarithmic depth QCLA and the

linear depth Quantum Ripple Carry Adder (QRCA) Cuccaro et al. (2004). In addi-

tion we also analyzed Approximate Quantum Fourier Transform (AQFT) Fowler and

Hollenberg (2004) which is applied as the last step in the Shor’s algorithm. It was

found that proposed architecture showed desired performance scalability for all three

benchmarks given no limitation of resources. At the same time, QCLA which demon-

strated the shortest execution time, was far more resource hungry than QRCA and

AQFT. Being the building blocks of modular exponentiation, quantum adders play

greater than AQFT in the context of resource-performance trade-offs analysis. The

overwhelming speed advantage of QCLA over QRCA was tested in the presence of

fewer resources. We observed that within the resource budget of 1.5 million-qubits,

the architecture could support the execution of 1,024-bit QCLA, 2,048-bit QRCA

and at least 4,096-bit of AQFT. The most remarkable result was the sudden sharp

rise of logarithmic QCLA execution time curve which eventually went past QRCA

linear curve as the problem size approached 1,024-qubit addition. From this study

22

we concluded that the optimal choice of quantum adder critically depended on both

the problem size as well as the size of a quantum system factorizing large integers.

See chapter 7 for comprehensive analysis and results of this study.

1.6 Summary

In this chapter we established research space for our thesis. We argued that the

unreliability of quantum bits and noisy quantum gates ranked on top of the list of

challenges involved in constructing scalable quantum computer. Next, we briefly

described how quantum computation was protected from noise by investing in var-

ious types of system resources and designing appropriate architecture for resource

utilization. Once the problem of finding reliable architecture translated into the

exploration of large parametric design space, we proposed to develop an efficient

performance estimation software tool to investigate the crucial trade-offs between

resource investment and performance gains. We argued that in contrast to the prior

studies, our tool analyzed the performance of application quantum circuits on vast

combinatorial design space spanned by the architecture attributes and parameters

of the quantum hardware. Our tool also detailed breakdown of performance metrics

and supports visualization of resource utilization. Using this tool we studied three

important problems which could provide valuable guidelines to experimentalists and

system architects to build large scale quantum computer.

23

2

Basics of Quantum Computing

2.1 Qubits

Quantum computing employs quantum mechanical properties of the matter in order

to perform mathematical calculations. The basic theme of quantum mechanical

computing is derived from our standard computers which process information stored

in the memory as bits. However, instead of bits, we work with quantum bits (qubits)

in quantum computation. A qubit is realized by the two-state quantum mechanical

system where each state correspond to either binary 0 or 1 analogous to the classical

bit. For qubit, these states are represented by notation |0y and |1y. The |0y and

|1y states form one possible set computational ‘basis’ states. The symbol |y is called

‘ket’ notation widely used in quantum mechanics along with ‘bra’ x|. One of the

remarkable characteristic of the qubit is that unlike bit which stores either 0 or 1, it

can occupy both |0y and |1y simultaneously. This unique state is called ‘superposition

state’ of the qubit. The superposition allows qubit to hold |0y and |1y states in

different proportion which can be described by their respective amplitudes. An

interesting question arises at this point: what will happen if we try to readout the

24

precise state of the qubit? Before answering this question, we define the reading

out of the qubit state in quantum mechanical term as ‘measurement’. Now, when

measurement is performed on a qubit, it collapses superposition into one of the basis

states; which in our case will be either |0y or |1y with the probability distribution

described by the amplitude of states. For example a qubit in the state |ψy � a|0y �
b|1y will give measurement result in the basis states with the probability a2 of reading

out |0y and b2 for reading out |1y. In order for probability interpretation of these

amplitudes to make sense, we require a2� b2 � 1 when a and b are assigned complex

values. The reason for using complex numbers in the description of the qubit will be

given shortly.

According to the theory of quantum mechanics, qubit states can interfere in

a complex manner resulting in the range of patterns: from reinforcement to the

cancellation of amplitudes. To model this quantum interference, the co-efficients

a and b of the basis states are assigned complex. By representing these complex

co-efficients in magnitude and phase notation, we find that common phase factor:γ

called global phase, can be factored out from the description of qubit |ψy � eiγpx|0y�
yeiφ|1yq. where x � cosp θ

2
q and y � sinp θ

2
q. The global phase is ignored because it

does not possess any physical significance. In contrast, φ has crucial meaning in the

description; it denotes relative phase between the basis states which plays vital role

in quantum interference. Therefore, the complete specification of a qubit state is

composed of the spherical coordinates description of the unit vector (ρ � 1, θ, φ) as

|ψy � cosp θ
2
q|0y � eiφ sinp θ

2
q|1y. During quantum computation, this vector rotates on

the surface of sphere called Bloch Sphere of Figure 2.1.

The single qubit state |φy can also be presented in a linear-algebra friendly no-

tation defined by vector in C2 as |φy1 � °z�1
z�0 kz|zy such that

°z�1
z�0 |kz|2 � 1. The

ket |y can be deemed as a column vector while bra x| as a row vector. For an n-

qubit quantum system, this representation can be generalized to a vector spanning

25

Figure 2.1: The Bloch Sphere representation of the qubit. [Diagram sketched by
Glosser.ca - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons]

complex Hilbert space C2n
in eq.2.1

|φyn �
2n�1̧

z�0

kz|zy (2.1)

The vector containing 2n complex amplitudes, one for each basis state |010203 . . . 0ny,
|010203 . . . 1ny through |111213 . . . 1ny. The linear-algebraic expression gives concise

description of the states of quantum system. At the same time it aids in our under-

standing of important quantum mechanical properties of the system. As an example,

a two-qubit state |φy2 � 1
2
|0102y� 1

2
|0112y� 1

2
|1102y� 1

2
|1112y can be written as tensor

product of two-single qubit states where each qubit is in equal superposition state.

|φy2 � 1?
2
p|01y � |11yq b 1?

2
p|02y � |12yq. When allowed to be written in a separable

single qubit states, the quantum system is said to be disentangled. When quantum

measurement is performed on this system, the outcome of reading out one qubit has

no affect on the others. However, in general when the co-efficients are unequal the

system may not be disentangled alluding to some degree of entanglement. The phe-

nomena of quantum entanglement describes strange correlation between the two or

more qubit states. For instance, in case of an entangled |φy2 � 1?
2
|0102y � 1?

2
|1112y,

the result of measuring out one qubit will collapse other qubit state in known state.

26

In this case if measuring first qubit gives |0y, the state of the second qubit will also

be |0y, likewise for |1y. Thus we either get |0102y or 1112y when measured in basis

states. The entangled state 1?
2
p|0102y�|1112yq is also called Einstein-Rosen-Podolsky

(EPR) pair Einstein et al. (1935) and it is used in several amazing applications of

quantum computing. In general, the phenomenon of entanglement widely features

in the algorithm algorithms and the construction of fault tolerant protocols as de-

scribed through rest of the chapter. For the upcoming discussion we shall drop the

subscript notation in the quantum state representation and assume the little-endian

as the default ordering of the qubits.

2.2 Quantum Gates and Measurement

Quantum gates modify the amplitudes of eq.2.1 by evolving quantum state according

to discretized simulation of the Schrodinger’s equation. The solution to the equation

requires the state to be evolved according to the unitary transformation. A quantum

gate on n-qubit operand is described by 2n�2n unitary matrix which transforms the

state vector of eq.2.1. During the execution of quantum algorithm, a set of chosen

gates is applied in the known sequence which gradually transforms input state into

the final state for the readout. The qubit states are outputted to the user by the

procedure called quantum measurement.

2.2.1 Single-qubit Gates

A set of commonly used single-qubit quantum gates is shown in Figure 2.2. The

Hadamard gate is often used in creating equal superposition by changing the trans-

forming as H|0y � |�y � 1?
2
p|0y � |1yq and H|1y � |�y � 1?

2
p|0y � |1yq. It can

also be used to collapse the superposition since H|�y � |0y, H|�y � |1y. The X

gate is analogous to the classical NOT. It flips the state of qubit from |0y to |1y
and vice versa. The Z gate flips the relative phase φ between the basis states by

27

Figure 2.2: Commonly used single-qubit quantum gates, their symbols and matrix
representation.

π radians (k0|0y � k1|1y to k0|0y � k1|1y and vce versa). The Y gate acts as both

bit and phase flip operator. The Phase (S) gate also changes the phase between the

basis states, albeit by an angle of π
2

while the T gate changes it by π
4

radians. The

action of these single-qubit quantum gates on qubit state can be viewed as rotating

the state vector on the surface of Bloch Sphere. Therefore X, Y and Z can be gener-

alized to arbitrary single qubit rotation (angle = θ) gates: RXpθq �
� cos θ

2
�i sin θ

2

�i sin θ
2

cos θ
2

�
,

RY pθq �
� cos θ

2
� sin θ

2

sin θ
2

cos θ
2

�
and RZpθq �

�
e�i

θ
2 0

0 ei
θ
2

�
along x, y and z axis respectively.

However, to allow quantum mechanical interaction among multiple qubits, the con-

cept of single-qubit gates needs to be generalized to the need multi-qubit quantum

gates.

28

Figure 2.3: Commonly used multi-qubit quantum gates, their symbols and matrix
representation.

Figure 2.4: Generic symbols for controlled-gates

29

2.2.2 Multi-qubit Gates

Figure 2.3 shows a set of quantum gates which act on multiple qubit operands. The

two-qubit gates has two operands: the control (ctr) and the target (tar) qubits. The

Controlled-Phase (CZ). It flips phase of the tar when the ctr is |1y. Like Controlled-

NOT (CNOT) performs X gate on tar when ctr is |1y. The Controlled-Controlled

(CCNOT or Toffoli) is three-qubit gate performs X gate on tar when the two control

qubits: ctr1 and ctr2 are |1y. We can also generalize these gates by replacing the

gate on tar by a general n-qubit quantm gate U . Thus, a symbolic representation

of a generic single-qubit and multi-qubit controlled quantum gate U is illustrated

in Figure 2.4. Their general matrix description will be
�
I 0
0 U

�
The multi-qubit gates

can entangle the states of the operand qubits and play vital role in generating com-

plex unitary operation with the aid of single-qubit gates. It is also known that a

CNOT gate and single qubit-arbitrary rotation gates can implement any multi-qubit

gate Nielsen and Chuang (2000).

2.2.3 Quantum Measurement

In quantum mechanics reading out the qubit can alter it state. The quantum mea-

surement is described by an operator which (1) produces the result of observing the

qubit (2) changes the state of the qubit. The result is one of the eigenvalue while

post-readout qubit state is the eigenvector of the operator. The eigenvector describes

basis state in which qubit is measured. Generally, the operator is chosen to be a her-

mitian so that measurement basis states can set to be orthonormal. To project |ψy
into the eigenstate of measurement operator M , we rely upon the projection oper-

ators P which constitute M as M � °mmPm. Here Pm is a hermitian projection

operator for the eigenstate corresponding eigenvalue m. Furthermore we require,

PiPj � δijPi and
°
m PmP

:
m � I. The last condition ensures that the probabilities of

all possible measurement outcomes add to 1. The quantum measurement meeting all

30

these conditions is called ‘projective measurement’. It should be noted that projec-

tive measurement falls into general formalism of quantum measurement Nielsen and

Chuang (2000) which relaxes some of the above mentioned conditions. However, for

most quantum computing application, projective measurement suffice. Hence for the

rest of the thesis we shall restrict to this formalism and use measurement implying

projective measurement. The probability of collapsing an unknown quantum state

|ψy into the eigenstate m of operator Pm is given by ppmq � xψ|Pm|ψy. The exact

state of the qubit after the measurement is given by Pm|ψy?
ppmq . Typical projective mea-

surement operators used in quantum circuits are given Figure 2.5. The MZ operator

measures qubit in the basis states |0y,|1y while MX in |�y,|�y. As an example, when

|ψy � 1?
2
p|0y � |1yq is readout in MZ , it will collapse to |0y state with probability 1

2

yielding to +1 eigenstate of the MZ operator. Similarly when |ψy is read in MX , it

will produce -1 eigenstate of MX with probability 1.

It is crucial to note that when measured in MZ , the states a|0y � b|1y and a|0y �
b|1y will output same probability distribution (+1 with prob. a2 and -1 with prob.

b2). This shows that MZ remains unaffected by phase flipped version of the qubit

state. Similarly the states a|0y � b|1y and b|0y � a|1y will produce same probability

distribution (+1 with prob.p pa�bq
2
q2 and -1 with prob.p pa�bq

2
q2) when measured in MX .

Hence MX outcome remains unchanged by the bit flipped version of the qubit state.

On contrary, the bit-flipped qubit state will flip the MZ measurement outcome from

+1 to -1 and vice versa. Similarly the phase-flipped qubit state will flip the MX

measurement outcome from +1 to -1 and vice versa.

The matrix representation of the MX and MZ is same as that of X and Z re-

spectively and these correspond to performing measurement in two different basis

states. We can generalize this concept to the measurement MU performed in the

eigenstate of the hermitian operator U having eigenvalues +1 and -1. The operator

31

Figure 2.5: Commonly used measurement operators, their symbols, matrix repre-
sentation M , eigenstates |ey, eigenvalues m and projection operators P

measurement circuit is shown in Figure 2.6. Note that in order to collapse the qubit

state ψ into eigenstates of U , the circuits needs this qubit to interact with another

qubit through controlled-U gate. The life span of the additional qubit is short; it

is initialized in a known state (|0y) and measured after a short sequence of gates.

Such a qubit is called ‘ancilla’ qubit. Once measured, such ancilla can be reused to

execute similar operator measurement circuits.

2.2.4 Classically Controlled Quantum Gates

The outcome of the qubit measurement is an eigenvalue which is a scalar quantity

and can be stored in classical computer memory. In many quantum circuits, based

on the measurement outcome (+1 or -1) of one qubit, we can choose to apply (or not

apply) a quantum gate on another qubit (or set of qubits). Such quantum gate is

called classically controlled quantum gate. These gates have already been described

earlier. To give different symbol to these gates, we append two parallel lines to the

32

Figure 2.6: The quantum circuit for performing measurement in the eigenstate
basis |e�1y, |e�1y of operator U

corresponding quantum gates as shown in Figure 2.7. When classically controlled

gate execution is dependent on the measurement outcome, one end of the parallel

lines is connected to the measurement symbol and the other end to the quantum

gate symbol.

2.2.5 Sample Quantum Circuit: Quantum Teleportation

Let us demonstrate a simple application of the quantum gates to construct a mean-

ingful circuit. In this example, we implement quantum teleportation which transfers

quantum state |ψy � α|0y � α|1y from one qubit (call it first qubit) to another

(third qubit) using an EPR pair state contained in qubit 2 and 3. The initial

state of the qubit can be written as a tensor product of an |ψy and EPR pair

state as: 1?
2
pα|0yp|00y � |11yq � β|1yp|00y � |11yq. After the CNOT gate, we ob-

tain: 1?
2
pα|0yp|00y � |11yq � β|1yp|10y � |01yq. When Hadamard gate is applied to

the first qubit, the resulting state becomes: 1?
2
rpαp|0y � |1yqp|00y � |11yq � βp|0y �

|1yqp|10y � |01yqs. At this point when first and second qubits are measured there are

four possibilities: For both outcomes (+1,+1) we obtain desired state α|0y � β|1y

33

Figure 2.7: The quantum circuit for transferring state |ψy from one qubit to another
using teleportation protocol

which is |ψy and no subsequent gates are applied. For (+1,-1), we obtain α|1y�β|0y
which can be converted to |ψy by applying X gate. For (-1,+1), α|0y � β|1y which

can be converted to |ψy by applying the Z gate. Finally in case of (-1,-1) α|1y�β|0y
which can be transformed back into |ψy by applying both X and Z gate. Thus we

have perfectly transferred |ψy from one qubit to another.

2.3 Universal Quantum Computation

Similar to classical digital circuit which can be constructed entirely from NAND

or NOR gates, it is known that an arbitrary quantum circuit can be constructed

using a finite set of gates called universal quantum gates, a set which is not unique.

There are several possible sets of universal quantum gates. For example CNOT

and arbitrary single qubit rotation comprise one universal set Nielsen and Chuang

(2000). However, these arbitrary rotations are not conducive to the precise physical

implementation and fault-tolerant computation. Alternatively, we can use Universal

set tCNOT, H, S, T u or tCNOT, H, S, Toffoliu to approximate arbitrary unitary

34

operation with desired level of accuracy Nielsen and Chuang (2000). The general

composition of a universal set is described as a union of a set of gates which can

generate all ‘Clifford group’ gates Gottesman (1998b) and one gate which belongs to

‘non-Clifford group’. The Clifford group gates include X,Y ,Z,S,H and CNOT gates

while non-Clifford include Toffoli and T gates.

To shield against noise, quantum information is encoded and processed using

specific quantum error correcting code. To ensure continuous protection against the

accumulation of errors, the gates in the universal set should be performed on the

encoded qubits. For many quantum error correcting codes, the execution of the

non-Clifford gates is substantially complicated and far resource consuming than the

Clifford gates. Due to this reason we prefer to minimize the number of non-Clifford

gates in the universal set. Therefore we construct this set by adding either Toffoli or

T gate to the set of Clifford gates. The decision to include either Toffoli or T gate

can be based on the nature of benchmark application circuit. In chapter 7, we show

that for quantum arithmetic circuit such as quantum adders, it is advantageous to

use Toffoli gates, while T gates are preferred for quantum Fourier Transform.

2.4 Quantum Noise

So far we have described qubit by its state which is coherent in a sense that qubit is

kept perfectly isolated from interacting with the undesired quantum system. How-

ever, as mentioned in chapter 1, the quantum components are very fragile as they

tend to lose information due to unwanted coupling with the surroundings (called

environment) or faulty operations. This loss is quantified by the uncertainty induced

in the coherent state of the qubit using a concept called ‘decoherence’. The incoher-

ent qubit state is modeled as a statistical mixture of coherent states. The ‘coherent

state’ is called the pure state and statistical mixture of pure states is called ‘mixed

state’. The mixed state is represented as positive semi-definitive, unit trace hermi-

35

tian matrix called ‘density matrix’ ρ. For example a qubit in the mixture of pure

states: |ψy1, |ψy2, . . . , |ψyn w.p. p1,p2,. . . ,pn respectively, is expressed by a density

matrix: ρ � °i�n
i�1 |ψyixψ|i. Note that density matrix a richer description of a qubit

in a sense that pure state can be represented a density matrix made of single pure

state. A unitary operator U acting on ρ transforms to UρU : while measurement

operator Mm changes ρ as MmρM
:
m

M:
mMmρ

. The detailed description of density matrix is

given in chapter 2 Nielsen and Chuang (2000).

Quantum noise process is formulated using operator-sum representation in which

qubit is entangled with the specific type of environment which is then measured

to render qubit in a mixed state. The collective effect of the noise process can be

represented by changing the density matrix ρ to Epρq � °
k

AkρA
:
k. The operational

elements Ak are conditioned to preserve the trace of the ρ. The choice of Ak operators

define the nature of quantum noise which arise in different physical systems. In this

thesis, we focus on ‘depolarizing channel’ which affects qubit information loss equally

among all three axes of the Bloch Sphere. The depolarizing noise changes the state

of the qubit as Epρq � p1� pqρ� p
3
pXρX � Y ρY q �ZρZq which means that a qubit

undergoes bit-flip (X), phase-flip (Z) and both bit and phase flip (Y) gates with

equal probability p{3 and remains unchanged with probability p. In the context of

quantum noise, we call these flips as ‘errors’ since they can cause corruption in the

qubit state resulting in the incorrect computation. The ‘similarity’ between noise

affected state σ � Epρq and the original state ρ is quantified by the ‘fidelity’ F pσ, ρq
defined as tr

a
ρ1{2σρ1{2 where tr designates the trace of the matrix. Naturally, fidelity

is a function of p, the probability of error (or failure probability) so that they can

both be used to quantify the amount quantum noise. From this definition we can

also relate failure probability to the ‘infidelity’ which can be defined as 1-fidelity. For

more details on quantum noise and other noise models, reader can refer to chapter

36

8 of Nielsen and Chuang (2000). In the next section we discuss how quantum error

correction provides protection against these errors and paves way for the reliable

computation.

2.5 Fault-tolerant Quantum Circuits

In this section we discuss a general mechanisms for guarding components of the

quantum circuits against noise. We first describe the basic criterion for choosing

quantum error-correcting code and justify the usage of Steane code Steane (1996)

in our study. To understand Steane code we first describe classical error correcting

code called Hamming [7,4,3] code. Using Hamming code, we shall describe general

construction of quantum CSS code Calderbank and Shor (1996) and converge our

discussion to specific CSS code called Steane [[7,1,3]] (Steane) code. Next, the error

propagation mechanism will be illustrated along with the description of Stabilizer

formalism. Finally, we shall detail the fault tolerant construction of the universal set

of quantum gates used in Shor’s algorithm.

2.5.1 The Choice of Quantum Error Correcting Code

Several factors affect the choice of quantum error correcting code. We identify fol-

lowing attributes provide decent guidelines to simplify the selection procedure.

• Well known fault tolerant encoding and error correction procedures

• Bitwise (Transversal) implementation of Clifford gates

• Distillation-free realization of fault tolerant non-Clifford gates

• Scheduling on hardwares of different types of constraints

• Support for the variety of noise models

37

We find that Steane [[7,1,3]] code is one of the few error correcting codes which

features all these attributes. First, the procedure for encoding and performing error

correction on the encoded qubit block are well defined and can be easily verified

(chapter 10 Nielsen and Chuang (2000)). Second, the execution of Clifford gates

can be done in a bitwise or transversal fashion which ensures that error in one qubit

doesn’t spread to multiple qubits in the encoded qubit block. Third, in case of

the non-Clifford gate such as Toffoli and T gate, the execution protocol is slightly

complex but can be broken down into two steps (1) magic-state preparation (2) data

injection into the magic state. Both these steps only need transversal application of

gates which prevents the spread of error, thus enable ‘fault tolerant’ implementation

as explained in section 2.5.5.

It is worth pointing out that for majority of error-correcting codes, magic-state

preparation step cannot be realized fault tolerantly. In that case we resort to the gen-

eral ‘distillation’ procedure in which several instances of non-fault tolerantly prepared

magic-states are processed to extract single high fidelity state Bravyi and Kitaev

(2005). Since distillation procedures are generally enormously time and resource

consuming Meier et al. (2012); Knill (2004); Bravyi and Kitaev (2005), therefore

distillation-free magic-state preparation is highly attractive feature of any quantum

error correcting code. The non-Clifford gates construct basic building blocks of the

Shor’s algorithm and their fault tolerant implementation is key to practical compu-

tational speed of the quantum computer. The efficient fault tolerant implementation

of the non-Clifford gates is one of the main reason of choosing the Steane code.

Fourth, the fault tolerant procedures of Steane code can be efficiently scheduled

on hardwares with different qubit connectivity constraints specified by the quantum

device technology. In contrast to the widely famous topological code Kitaev (2003)

which are tailored to the hardware which supports 2-D nearest-neighbor interaction,

Steane code can be mapped onto range of hardware architectures such as linear

38

chain of qubits (chapter 5), 2-D nearest neighbor hardware Svore et al. (2006b) and

the one which supports flexible physical transportation mechanism for the qubits

(e.g., trapped ion computers) for the implementation non-distance fault tolerant

quantum computation Monroe and Kim (2013); Monroe et al. (2014). Historically,

Steane code been considered as premier choice for protecting trapped ion qubits

which are considered as one of the strongest candidate for the realistically achievable

large scale quantum system Monroe and Kim (2013). Even though the topological

codes generally achieve higher noise threshold to provides greater noise protection

against noise as compared to the Steane code, when it comes to the overall resource

overhead, reliability and the time to execute large size quantum algorithms on the

trapped ion computer, the Steane code edges ahead of the topological code Suchara

et al. (2013b). Since in this thesis we choose to model trapped ion technology for

underlying quantum hardware, Steane code is the natural choice for error correcting

code.

Lastly, Steane code is one of the few codes which have been studied in the context

of noise models other than depolarization channel (e.g., Amplitude damping chan-

nel Gutiérrez and Brown (2014)). It is also known that Steane code can be used

to correct errors which are correlated in time Lu and Marinescu (2007) as well as

in space (see Appendix A). In a quantum hardware where qubits suffer from errors

specified by multiple types of noise processes, Steane code acts as a powerful tool of

protection against noise. Although, in this thesis we restrict our analysis based on

depolarizing noise, the performance simulation tool (described in chapter 4) based on

Steane code can be easily extended to other noise models for the future investigation.

2.5.2 Hamming Code

The Hamming code [7,4,3], encodes four data bits into a seven bit codeword whose

‘code distance’ is three. There are sixteen codewords in the Hamming [7,4,3] code,

39

each assigned to one of the sixteen possible 4-bit binary strings. These codewords pro-

vide protection against noise (e.g. during transmission over some physical channel)

which can be determined by the code distance. The code distance is the minimum

hamming distance between any two codewords. It means when if a codeword is cor-

rupted by single bit error (which corresponds to change the codeword by hamming

distance of 1), it is still closest to the original codeword. By carefully choosing a set

of codewords and designing the method to determine the unique codeword closest in

the hamming distance to the corrupted codeword, we can detect and correct single

bit-flip error. The codewords are obtained by appending three parity bits to the

original 4-bit string using the Generator matrix G in 2.2.

G :�

�
���������

1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

�
��������

(2.2)

The rows of G, compute the codeword bits. The rows 3,5,6 and 7 will simply copy

the data bits (call them components v1,v2,v3,v4 of bit strings v) to the bits 3,5,6 and

7 of the codeword. Whereas, the bits 1,2 and 4 of the codeword store three parity

bits v1 ` v2 ` v4, v1 ` v3 ` v4 and v2 ` v3 ` v4 respectively. Therefore, in order to

encode v, the codeword c is obtained by multiplying c � Gv with matrix arithmetic

performed in the Galois binary field GF(2). For example the bit string v � p1, 0, 1, 0q,
will be encoded into the following codeword c � p1, 0, 1, 1, 0, 1, 0q1. The codeword

can undergo bit flips when it is transmitted over the noisy channel. The [7,4,3] code

can correct up to one bit flip error whose location can be determined by performing

parity check operations on the corrupted codeword. A procedure called ‘syndrome

extraction’ is employed to determine if the parity relationships among the codeword

40

bits has been preserved during the transmission. In case of Hamming code the

syndrome is obtained by computing three parity bits p1,p2 and p3 in 2.3. The ci are

components of bit vector of the codeword c. These parity checks can be written in

the matrix form H given in 2.4

p1 � c4 ` c5 ` c6 ` c7p2 � c2 ` c3 ` c6 ` c7, p3 � c1 ` c3 ` c5 ` c7, (2.3)

H :�
�
�

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

�

 (2.4)

The location d of the bit flipped in the corrupted codeword c1 is determined by

d � Hc1. For example, if the fourth bit of the codeword c is flipped, then c1 �
p1, 0, 1, 0, 0, 1, 0q would give syndrome d � p1, 0, 0qT which is the binary representa-

tion of 4. It is worth noting that in an event of multiple errors in the codeword, the

error correction procedure will result in the false codewords. Moreover, when there

is no bit flip error in c1 (or highly unlikely event of c1 corrupted to become another

codeword due to burst of errors), it will give all zero (no error). For all uncorrupted

16 codewords listed in Table 2.1, the parity check will give 0. Since G describes the

basis set for the codewords, it is easy to see that HGT � 0. Hamming code falls into

the category of classical linear codes in which the sum of two codewords in GF(2) is

another codeword in the set.

2.5.3 Quantum CSS Codes

Quantum error correcting codes encodes several physical qubits into one ‘logical

qubit’ in order to correct bit (X) phase (Z) and bit-and-phase flip (Y) errors. Since

Y can be decomposed into X and Z error, it suffices to construct a code with

41

Table 2.1: Hamming Codewords

Set 1 Set 2
0000000 1111111
1010101 0101010
0110011 1001100
1100110 0011001
0001111 1110000
1011010 0100101
0111100 1000011
1101001 0010110

corrects X and Z error. The protection against these basic errors is sufficient to

protect quantum information from any type of noise Nielsen and Chuang (2000).

One simple yet powerful recipe to design quantum relies on classical linear code

which can correct for the bit flip error(s). Once X errors are corrected, the phase

errors can be converted into bit flips using bitwise Hadamard on the codeword qubits:

HXH � Z. If this transformation keeps us within the desired codeword space, we

can also correct for Z errors and we have a satisfactory quantum error correcting

code. Such quantum code is called Calderbank Shor Steane (CSS) code Calderbank

and Shor (1996). More formally, we need two classical codes C1 which is [n,k1] and

C2 which [n,k2] code, such that C2 � C1 and both C1 and CK
2 can correct up to t

errors. Using such C1 and C2 we can construct [[n,k1 � k2,t]] quantum code which

can correct up to t errors.

We construct a specific CSS code called Steane [[7,1,3]] using classical seven-bit

Hamming code. This code encodes seven ‘physical qubits’ into one Steane ‘logical

qubit’. We choose Hamming [7,4,3] for C1 which has all 16 codewords while C2 � CK
1

is a [7,3] code containing Set 1 of Table 2.1. Note that C2 � C1 and similar to C1,

CK
2 can correct for single error since CK

2 � pCK
1 qK � C1. The remarkable feature of

the CSS codes lies in bi-directional transformation between C1 and CK
2 using bitwise

Hadamard on the codewords if they are contained as superposition states of the

42

logical qubit. Based on this observation, we can derive logical computational basis

states |0yL and |1yL for the Steane logical qubit. Each state is carefully assigned set of

codewords as follows. Since H|0y � |�y and H|�y � |0y, the codewords comprising

Steane |�yL should be orthogonal to codewords contained in Steane |0y. The only

way this can be achieved is by assigning all codewords to |�yL (code space: C1) while

|0yL the codewords in C2. This means that |1yL will be the codewords contained in

the set C1� C2.

|0yL � 1?
8
r|000000y � |1010101y � |0110011y � |1100110y � |0001111y � |1011010y �

|0111100y � |1101001ys
|1yL � 1?

8
r|1111111y � |0101010y � |1001100y � |0011001y � |1110000y � |0100101y �

|1000011y � |0010110ys

2.5.4 Stabilizer description of Steane code

The parity check matrix H in 2.4 determines whether a bit string c lies inside or

outside the code space. @c, Hc1 � 0, it perseveres or ‘stabilizes’ the code space. In

classical syndrome calculation, the parity checks computed by Hc1 employs summa-

tion over GF(2). By replacing summation with multiplication we can formalize the

syndrome vector calculation for quantum CSS code. The multiplication is carried

over the group t�1,�1u which correspond to the outcome of the operator measure-

ment procedure (section 2.2.3). These operators are design to calculate syndrome

locating bit (X) or phase flip (Z) errors in the encoded qubit and can be derived

from the parity check matrix 2.4. Using identities of Table 2.4, X and Z errors can

be caught using operator measurement procedure shown in Figure 2.8. By measuring

X operator (substitute X for U in Figure 2.6), we can propagate Z error in |ψy to

flip the measurement outcome from +1 to -1 or vice versa. Similarly by measuring

Z operator (substitute Z for U in 2.6), we can propagate X error in |ψy to flip the

measurement outcome from +1 to -1 or vice versa.

43

Table 2.2: Steane Code Stabilizers

SX SZ
Z4Z5Z6Z7 X4X5X6X7

Z2Z3Z6Z7 X2X3X6X7

Z1Z3Z5Z7 X1X3X5X7

Table 2.3: General error detection procedure for Steane code. The qubit infected
with X and/or error is identified by measuring the syndromes

S1 S2 S3 Error Qubit

+1 +1 +1 None
+1 +1 -1 1
+1 -1 +1 2
+1 -1 -1 3
-1 +1 +1 4
-1 +1 -1 5
-1 -1 +1 6
-1 -1 -1 7

For Steane code, we can translate parity checks of H into corresponding syndrome

operators SX and SZ detecting X and Z error respectively. For three parity checks

in 2.3 we measure bit-flip syndromes operators S1
X � Z4Z5Z6Z7, S2

X � Z2Z3Z6Z7,

S3
X � Z1Z3Z5Z7. For the phase-flip syndromes operators can be obtained by re-

placing X with Z by virtue of CSS code construction. Hence S1
Z � X4X5X6X7,

S2
Z � X2X3X6X7, S3

Z � X1X3X5X7. The set S of all six syndrome operator defines

the stabilizers for the Steane code since it can validate correct (error free) state of the

Steane logical qubit. These are listed in Table 2.2. When all six stabilizer measure-

ments output +1, no single qubit error is inferred (as in Hc1 � 0 for Hamming code).

Otherwise, the error is located by adopting similar procedure for the Hamming code,

described in Table 2.3. Once bit- and phase-flip qubits are identified, the recovery

procedure is applied to undo these errors: by applying X gate on bit-flipped qubit

and Z gate on the phase flipped qubit in the logical block.

44

Figure 2.8: X and Z error detecting procedure using operator measurement. (a)
shows that X error is propagated to change measurement outcome by measuring Z
while (b) shows that Z error is propagated to change the measurement outcome by
measuring X

Table 2.4: Propagation of X and Z through different gates

45

2.5.5 Fault-tolerant gates in Steane code

We have seen Steane logical basis states |0yL and |1yL which encode computational

basis states one qubit. The next step involves performing computation directly on

the logical qubit without decoding. Otherwise we cannot reap the benefits of the

quantum error correction which ensures protection against noise. We define ‘logical

gate’ which performs which is an encoded version of the physical or uncoded quantum

gate (see Figure 2.2 and 2.3) discussed earlier in the chapter. A logical gate is

designed to transform the state of the logical qubit in the same way as physical

quantum gate transforms the state of the physical qubit. It is constructed from

physical gates which act on the constituent qubits of the logical qubit block. Since

imperfect physical gates are tend to be noisy, the application of logical which can

cause errors in the logical qubit. For Steane protected logical qubit, we can detect and

correct for single error. Therefore, as long as physical gate execution is corrupted to

cause up to one error in each operand logical qubit, the logical gate is fault-tolerant.

This is because, we can error correct each operand to restore its pristine logical

state. The condition that at most one physical qubit is corrupted by noise can be

met easily if physical gates are applied bitwise on the logical block. A logical gates

constructed in this manner is naturally fault-tolerant and called is ‘transversal gate’.

For Steane code, it can be verified that logical gates X,Y ,Z,H,S and CA,B (CNOT

between logical qubit A and B) are all transversal. The bitwise implementation of

these gates is listed in Table 2.5. For the remainder of discussion we use subscript L

to differentiate logical gate or qubit state from that of the physical.

To show that Steane code can support universal set of gates, the fault-tolerant

construction of T (or Toffoli) gate is required. In addition, we need to provide the

fault-tolerant circuits in order to obtain Steane code syndromes and perform logical

MX and MZ . For all these logical operations, a basic circuit construct of a logical

46

Table 2.5: The list of transversal logical gates in Steane code. The subscript in the
right column indicate physical qubit position in the logical block.

Logical gate Physical implementation

X X1X2X3

Z Z1Z2Z3

Y Y1Y2Y3

H H1H2H3H4H5H6H7

S Z1S1Z2S2Z3S3Z4S4Z5S5Z6S6Z7S7

CA,B CA1,B1CA2,B2CA3,B3CA4,B4CA5,B5CA6,B6CA7,B7

operator U measurement is required. Figure 2.9(a) expands the circuit of Figure

2.6 by adding single qubit controlled multiple U gates on the Steane logical block.

However, this circuit is non fault-tolerant since a an error (e.g. X) in the ancilla can

propagate to multiple physical qubits in the block (e.g. when U � X). Since Steane

code incorrectly recovers the logical state of the qubit when the block has more than

one bit-flips (or phase flips) errors, this error event will result in false logical state

ensuing logical error.

A generic fault-tolerant operator measurement circuit is given in Figure 2.9(b).

Unlike its non fault-tolerant counterpart, this circuits employs several ancilla qubits,

out of which one acts as verifier which prevents the spread of uncorrectable errors into

the logical block as follows. Assuming U � X, a single X-error anywhere in the first

three ancilla qubits will either remains single-X error or spreads into two or more X-

errors and inevitably propagates to the fourth ancilla qubit. This qubit acts a verifier

whose Measurement result indicates multiple X-errors in the ancilla preparation part

of the circuit. Thus when MZ gives -1, it we know that other three ancilla qubits

carry multiple errors which can propagate into data when controlled-U gates are

applied. In this case we start over and the ancilla preparation part of the circuit

is repeated until MZ gives +1. Once desired measurement outcome is obtained,

controlled-U are applied with ancilla contain single X-error or two (or more) X-

errors which cancel each other on the fourth ancilla qubit before the measurement.

47

Single error propagating from ancilla into the logical block is correctable. However,

the possibility of uncorrectable two-error event needs to be minimized. If p is the

probability of one X-error in the circuit, then the probability of two X-errors is

Opp2q. The defining characteristic of the fault-tolerant circuit is that it can ensures

that number of ways K2 in which two-error event can occur with sufficiently small

probability so that K2p
2 ! p when p is low.

Next, we note that although single Z-error from ancilla does not propagates into

the logical block, however it can easily propagate to second ancilla qubit through

CNOT gates. The H gate will turn the Z-error into X-error which flips the final

measurement outcome, thus the incorrect output eigenvalue of logical operator. The

same logical error can occur if the final measurement fails or ancilla qubit is un-

dergoes bit-flip just before the measurement. When each one of these events occur

with probability p we obtain logical error with the same probability unless specials

measures are taken to make it Opp2q. The solution turns out to be very simple:

repeat the entire circuit of 2.9(b) three times and take the majority vote of the sec-

ond ancilla qubit measurement. This means that the outcome needs to be incorrect

at least two out of three trials in order to cause logical error. Thus logical failure

probability is Opp2q. The circuit is fault-tolerant because (1) it does not allow single

error anywhere in the circuit to cause logical error and (2) the probability of multiple

errors propagating to cause logical error is Opp2q.
The fault-tolerant circuit in Figure 2.9 contains two main components: ancilla

state preparation and ancilla state decoding. The special ancilla state used here is

called ‘cat state’. For the remainder of discussion we need three- four- and seven-

cat state preparation and decoding. These are shown in Figures 2.10 2.11 2.12

respectively. These simple fault-tolerant constructs along with transversal controlled-

U gates can be used to develop complicated fault-tolerant blocks to allow for universal

quantum computation in Steane code.

48

The error correction circuit involves six stabilizer measurements, each involv-

ing preparation of 4-cat state preparation, transversal CNOT/CZ followed by 4-cat

decoding. Each stabilizer measurement is repeated three times, the outcome is com-

puted from the majority vote of the three measurement trials. Once error location

is identified, the recovery procedure is used to undo the error by applying X or Z

gate on the affected qubit.

In addition to correcting for errors, the Steane error correction circuit can be used

to initialize the logical block in the desired basis state. The fault-tolerant circuit to

prepare |0yL is shown in Figure 2.14. A block of seven physical qubits in any arbitrary

state is projected on to the Steane state: |sy � α|0yL � β|1yL by error correction

circuit. The state |sy produces |0yL or 1yL when logical MZ is performed. If needed,

the resulting state can be flipped from |1yL to |0yL by logical X.

The execution of the Steane TL on |φyL is a complicated two-step process. First,

the magic state: T |�y is prepared by measuring the logical operator e
iπ
4 SX � TXT :

on |0yL state logical ancilla, shown in the Figure 2.15. The controlled-TXT can be

broken down into transversal T , CNOT and T :. The +1 eigenstate of this operator

is logical T |�y :� 1?
2
p|0y � e

iπ
4 |1yq. The operator is measured three times and the

preparation concludes if majority vote is +1. Otherwise, ZL is applied to the state

in order to obtain logical T |�y. Once magic state is prepared in the logical ancilla,

the operand |φyL is teleported into the ancilla using logical CNOT, MZ and the SX

gates contingent upon the MZ outcome (-1).

Finally, the Steane Toffoli gate also requires magic state preparation in which

operand qubits are teleported. In this case The magic state will be logical 1
2
p|000y �

|010yq � |100y � |111y and it is prepared in three logical ancilla state |φ�yL shown in

Figure 2.17(a). The logical operand qubits |XyL, |Y yL and |ZyL are teleported into

the magic state using a sequence of Clifford group gates, some of which are controlled

49

by Measurement output as shown in Figure 2.17(b).

We have provided brief discussion of the Steane code logical operation circuits.

The detailed description can be found in provided in chapter 10 Nielsen and Chuang

(2000). The circuits described in this section are all fault-tolerant since their com-

ponent are made of fault-tolerant circuit constructs and they prevent single error

occurring at any location in the circuit to induce multiple errors in any logical qubit

block. Although the number of ways in which these errors can occur linearly grows

with the size of the circuit, the fault-tolerance construction ensures that none of

these event produces uncorrectable error pattern. However, the impact of two-error

events K which generally lead to the logical error still needs to be quantified to esti-

mate logical failure probability pL � Kp2. Although, K scales (quadratically) in the

size of the circuit, the actual value may be higher when these circuits are mapped

and scheduled onto the hardware. In chapter 5, we shall estimate pL as well as the

execution time of Steane fault tolerant logical operations graphed on the realistic

quantum computer hardware.

2.5.6 Concatenated Quantum Error Correction

We have seen that failure probability of the logical quantum operation reduces from

p to pL � Cp2 with one layer of encoding where C represents the number of faulty

locations in the equivalent physical circuit. With two layers of encoding, the failure

probability can be further suppressed to pL � CpCp2q2. Generalizing to n layers

of concatenation, we have pL � C2n�1p2n . The double exponential decrease in the

pL with the addition of encoding layer is a great news for the scalable quantum

computation if the cost of additional layer is adequately lower than the decrease in

pL. Fortunately, the double exponential reduction in failure probability can be met

with only exponential increase in qubits and operations with each added encoding

layer. To show this, we present the general construction of fault-tolerant operation

50

Figure 2.9: Comparison of non fault-tolerant (a) with fault tolerant (b) Measure-
ment of logical operator U .

Figure 2.10: Encoding and Decoding circuits of a 3-cat state

51

Figure 2.11: Encoding and Decoding circuits of a 4-cat state

protected by multiple layer of concatenation using circuits from the last subsection.

Construction of the concatenated code

We know that using encoding circuit of Figure 2.14, 7 physical qubits encode one

Steane logical qubit. Since only one layer of encoding is used, we call it layer-1

or L1 qubit. The logical gate acting on L1 qubit operand is termed as L1 gate.

When second layer of encoding is employed, we can use the same encoding circuit by

replacing each (1) physical qubit by corresponding L1 qubit and each (2) physical gate

by equivalent L1 gate. This method can be generalized to obtain logical operation at

second layer of encoding (L2-operation) wherein, we replace each constituent physical

qubit or operation with corresponding L1-qubit and operation respectively. Using

this recipe we can easily translate fault-tolerant operations at first layer of encoding

shown in the previous section, into fault-tolerant circuit at second layer of encoding.

Conclusively, an L2 operation can be constructed from an constituent L1 operation

52

Figure 2.12: Encoding and Decoding circuits of a 7-cat state

in the same way as L1 operation derived from physical (L0) operations. Hence if

we know how to construct fault-tolerant operation circuit at first layer of encoding,

we can recursively construct fault tolerant operation at any layer i using i� 1 fault-

tolerant operations. In general different codes can also be used to provide varying

degrees of protection across layers of concatenations. This summarizes the key idea

behind concatenated quantum error correction. We use Steane code at all layers of

concatenation in this thesis.

53

Figure 2.13: Fault tolerant circuit for detecting errors in the Steane logical block.
The sub-circuit SZ extracts syndrome for phase flips while the sub-circuit SX extracts
syndrome for the bit flips

Figure 2.14: Circuit for the preparation of Steane |0yL state. The logical measure-
ment MZ circuit is obtained by substituting Z for U in Figure 2.9(b)

54

Figure 2.15: Fault tolerant circuit to prepare Steane T |�y state. The circuit
requires the preparation of Steane |0yL state. The fault-tolerant measurement of an

operator e�
iπ
4 SX � TXT : requires transversal application T , CNOT and T : gates

Overhead scaling in the concatenated code

Let us now analyze the overhead incurred in using additional encoding layer. To

quantify the worst case overhead we choose a logical operation which comprises

most number of physical operations (e.g., T or Toffoli gate), call this opworst. It is

easy to verify that if L1 opworst requires k physical operations, the corresponding L2

operation will consume no more than k opworst L1 operations or k2 physical opera-

tions. Similarly an L3 operation will consume k opworst L2 operations or k3 physical

operations. In general operation at layer n will consume kn physical operations.

55

Figure 2.16: (a) Fault-tolerant circuit to perform Steane T gate using magic state
T |�y. The sub-figure(b) is a concise presentation of fully expanded circuit in (a)

56

Figure 2.17: (a) The Toffoli magic state |φyL (which requires the application of
transversal Toffoli gate) (b) Data teleportation into the magic state |φyL.

Hence, computational overhead scales exponentially with concatenation layers. To

evaluate the resource overhead scaling, we perform similar worst case analysis by

replacing operation count by qubit count. Since we know that qubit count is al-

ways bounded by the operation count, therefore we conclude that in the worst case,

resource overhead scales exponentially with the layers of concatenation. Now if we

compare the overhead of the concatenation with the reduction in failure probability,

we find that double exponential decrease in failure probability comes at the cost of

only single exponential increases in operation and resource overhead. In other words

the gain in performance exponentially outweighs the cost of concatenation. This

means that by adding levels of encoding, the failure probability per logical oper-

ation sufficiently can be exponentially reduced to arbitrarily low value in order to

execute sizable quantum circuits. This concept is formally summarized by quantum

threshold theorem Aharonov and Ben-Or (1997).

Quantum Threshold Theorem

The formal statement of quantum threshold theorem is given in Theorem 1.

Theorem 1. The quantum circuit containing gpnq gates will fail with probability at

57

most ε, by incurring operation and resource overhead scaling only poly-logarithmically

in gpnq
ε

, given that each physical gate fails with probability p strictly less than some

threshold value: pth.

The condition p pth is called threshold condition which ensures that for C ¡ 1{pth,
the logical failure probability pL � Cp2 of a encoded qubit/operation is strictly

smaller than p when error correction is performed. This ensures that there is a

net gain in reliability due to the computation performed on encoded qubit. Since

pL strongly depends on the number of fault points C in the fault-tolerant circuit

block, the threshold value pth is often determined by the most complicated fault-

tolerant operation for given error correcting code. Once threshold condition is met,

multiple layers of encoding per logical qubit are used to recursively minimize the

failure probability as ε � ppnqpCpq2d{C where C ¡ 1{pth and d is the number of

concatenation layers.

Limitations of the quantum threshold theorem and new research direction

Theorem 1 is an encouraging result, it only gives rough estimate of overhead of qubit

resources and execution time of the quantum application circuit. We find that there

is substantial space for the resource-performance co-optimization. For example, the

ancilla qubits used in the complicated logical operation can be shared and reused

among multiple logical data qubits during the circuit scheduling. The sharing may

increase execution time but reduces overall resources, leading to an interesting study

of trading performance with resource investment. Similarly, the frequency of error

correction opens another avenue of optimization. Instead of inserting error correction

after each logical gate, we can selectively error correct logical qubits depending upon

the estimate of accumulated physical noise. Finally, as quantum system scale, the

role of communication channels and the support of concurrently executable gates

becomes heavily dependent on the hardware constraints and resource distribution

58

architecture. Therefore, complete characterization of resource-performance needs in

addition to quantum threshold theorem, the design of quantum hardware system

which will be described in the next chapter.

2.6 Summary

In this chapter we described the basic concepts of quantum computation including

qubits and various quantum gates used in practical applications. We also illustrated

how to protect quantum information from noise by error correction using Steane code

as an example. The fundamentals of the constructing encoded qubit basis states were

provided as well as procedure of applying gates on encoded qubits was throughly dis-

cussed. Using these concepts, the basic principles of fault-tolerant computation were

developed. In the end we showed that while quantum threshold theorem guaranteed

desired level of fault tolerance at the cost of modest resource overhead, it did not

provide adequate insights into the resource-performance trade-offs in the presence of

limited hardware resources.

59

3

Trapped-Ion Quantum Hardware

Quantum computation needs to be physically realized in order to gather practical

utility. The basic criterion of achieving computation in realistic hardware stems

from the operational requirements of the components of general quantum circuits.

While it is possible to experimentally validate quantum mechanical behavior in sev-

eral hardware technologies, the ability to harness these properties for meaningful

computation needs to be specifically characterized. In this regard the famous Loss

DiVincenzo criterion Loss and DiVincenzo (1998) details fundamental requirements

for candidate quantum device as follows:

• It provides ‘well-defined’ representation of qubits

• It can ‘initialize’ qubits in the basis state

• It ‘retains’ the qubits state with sufficiently low decoherence

• It allows reliable mechanism of ‘measuring’ qubit states

• It performs ‘universal set’ of quantum gates to enable arbitrary quantum com-

putation

60

The technological advancements to explore quantum mechanical properties of mat-

ter has led to several types of physical implementations of quantum systems Ladd

et al. (2010a). However, only few of these have shown potential to become serious

contenders for the large scale quantum computer in the face of several technological

challenges. In this chapter we describe trapped-ion based quantum computers which

is one of the strongest candidate for the large scale quantum computation Cirac and

Zoller (1995).

3.1 Introduction to the Trapped-Ion Quantum Computer

The trapped-ions offers very reliable hardware platform for the quantum computation

which has sparked great interest and significant progress in this technology Nielsen

and Chuang (2000); Monroe et al. (2014); Monroe and Kim (2013). It not only

adequately fulfills DiVincenzo criterion but also possesses several prominent proper-

ties demonstrated experimentally which are conducive to architectures for the fault-

tolerant quantum computation. The qubit is realized by the atomic ion (e.g., 171Yb�

ion Olmschenk et al. (2007)) and its basis states(e.g., |0y or |1y) can be mapped to

highly stable internal spin states of the ion. These may be the two ground state

of ‘hyperfine qubit’ or a ground and an excited states of optical qubit. The ions

can be held in the free space by adequate application of electromagnetic field and

DC voltage on the physical trap. A set universal quantum gate can be executed by

firing appropriate frequency lasers beams to the operand ions which results in the

transitions between the spin states. In case of single-qubit gates (arbitrary rotation

around Bloch-Sphere), we can direct the laser beam to the target ion and change

its internal state through Raman Transitions. For two-qubit gates(e.g., CZ), the

laser induces coulombic interaction between the operand ions such that spin of one

ion can change the other’s. Multiple ions can be trapped to form a chain to share

common vibrational mode which can be used to enact multi-qubit gates. The mode

61

of vibration acts as quantum bus which can be used to transfer qubit information

from one ion to another or to affect their states. The internal spin of an ion can be

coupled with the bus. The spin-coupled vibrational mode is shared by all the ions in

the chain. For ion whose spin needs to be affected, the vibrational mode is swapped

with its spin, thus changing the state of target qubit. Both coupling and swapping

are again accomplished by lasers of appropriate frequencies. It should be noted that

when ions tend to heat up when operated using vibrational modes, this heat can

adversely affect the state of the stored qubit. To remove heat from the ion, either

low frequency laser (doppler’s cooling) or interaction with the additional low energy

ion (sympathetic cooling) is employed.

Both initialization and measurement in the desired basis state can be easily im-

plemented using laser tuned (or detuned) to the state. For initialization, the laser

continues to excite the ion to collapse into a state (chosen to be the basis state)

which is impervious to the laser excitation. In case of measurement, depending upon

the state of ion, the laser application leads to two distinct types of state-transition;

one in which ion aggressively emits photons and the other in which it does not. Thus

qubit states can be adequately readout.

The trapped-ion technology is making rapid progress Benhelm et al. (2008) to

attain high quality quantum memory and basic operations (gates, initialization and

measurement). There are two important factors of these advancements. First, the

methods of trapping ions or group of ions have achieve sufficient level of sophistica-

tion Noek et al. (2013b). Once initialized, the ions can retain their state for period

much longer than the execution time of the gates and measurement Mount et al.

(2013). Thus qubit memory is very robust and reliable component of large scale

computation. Second, the trapped ions are accessible for operations; they can be

addressed individually for quantum gate Crain et al. (2014a) as well as measured

with high fidelity Noek et al. (2013a). Third, the amount of control with which

62

Table 3.1: State-of-art infidelities of various quantum operations in the trapped-ion
hardware. The variable T in the last row, represents time in seconds

Quantum operation Infidelity Reference

Single-qubit gate 10�6 Brown et al. (2011)
Two-qubit gate 10�3 Ballance et al. (2014)

Initialization 10�4 Harty et al. (2014)
Measurement 10�4 Harty et al. (2014)

Memory 1� e�T {10 Langer et al. (2005)

lasers can manipulate the ion state has matured enough to allow for reliable quan-

tum operations. The quantum control techniques such as dynamic decoupling and

compensation pulses empower quantum gates with higher accuracy and greater pre-

cision. Table 3.1 shows state-of-art quality of quantum operations measured by their

infidelity. With the current pace of advancement, these numbers are expected to

nosedive providing physical quantum component with even greater reliability Ben-

helm et al. (2008)

3.2 Architectures for Trapped-Ion Quantum Computers

3.2.1 Why quantum architecture?

One of the major themes in classical computer design revolves around compensating

the inefficiencies of a physical hardware with additional resources efficiently utilized

by an adequate architecture. For example, an appropriate memory hierarchy can

substantially hide the latency of communication between slow storage units and fast

microprocessor. The power dissipation in the hardware can be controlled by dis-

tributing computation among multiple data processor cores. The clock skew arising

in the FPGA and ASIC systems is minimized by sophisticated clock-tree architec-

tures. In this sense, the current status of quantum hardware technologies justifies

the quest for suitable architecture space. To design a quantum computer containing

millions of qubits, the system architecture needs to be defined. Even though the lab

63

demonstration has been restricted to dozen qubits, several designs have been pro-

posed to scale trapped-ion technology to larger systems. The goal of scaling small

sized lab computer fiddling with toy problems in the lab to the sizable computers

solving meaningful practical problems, invites expertise from the field of physics as

well as computer science. On one hand, device technology continues to evolve to

provide us with quality components. On the other hand, we need to architect mean-

ingful circuit blocks from these components which can be used for computation. The

task of designing quantum system for given application amounts to mapping quan-

tum circuit on the hardware within the framework of its physical constraints. The

study of quantum architecture sheds insights into various design strategies in order

to systematically construct larger quantum systems. The salient features of quantum

architecture study includes:

• Assignment of qubits and gates to the resources provided by the hardware e.g.,

ions and lasers

• Strategies to group physical qubits according to their collective task (e.g., basic

fault-tolerant operation)

• Hierarchical design of complicated blocks (e.g., logical Toffoli or T gate) by

assembling simpler blocks

• Choice of communication channels to connect different qubit blocks

• The structuring of associated classical control system to drive quantum hard-

ware resources to perform specific set of tasks (e.g., physical quantum opera-

tion)

While all these aspects of architecture study are vital, the design of control system

can be aggressively leveraged from the maturity in classical computer architecture or

64

Figure 3.1: Description of a monolithic trapped-ion quantum hardware

perhaps borrowed from the field of ASIC design. The frontier of quantum architecture

needs far greater attention since the technology is still nebulous, thus, invites detailed

investigation.

3.2.2 Brief Survey of Trapped-Ion Quantum Computers

Several architectures for ion traps based quantum hardware have been propounded.

A large set of architecture was constructed by connecting surface traps holding short

chain of ions arrays to form a monolithic 2-D planar surface in which all necessary

65

Figure 3.2: Description of Quantum Logic Array Architecture

operations for quantum processor were executed. The Figure 3.1 shows ions were

trapped in the space between electrodes and could move from one point to another

within and across different electrodes. This is called ‘ballistic shuttling’ of ion and it

is accomplished by continuously changing the voltages electrodes through which ions

were incidentally passing. The heat acquired by ion during shuttling was removed

by sympathetic cooling. The architecture was modeled as 2-D grid of identical ‘cells’

(See Figure 3.2(a)). A cell represented location for the storing qubit or performing

single- or two-qubit gates or shuttling passage for the ion.

Based on the abstraction framework, a generation of trapped-ion architectures

were developed to study the performance of Shor’s algorithm and/or its component

circuit blocks. The circuits were encoded using Steane [[7,1,3]] code. These are

described as follows:

66

Quantum Logical Array (QLA) Architecture

The Quantum Logic Array architecture Metodi et al. (2005) in Figure 3.2, divides

trapped-ion hardware into uniform sized blocks comprising basic cells. These blocks

are arranged on a regular 2-D grid, were named ‘Tiles’. The cells within the Tile can

be classified as either memory cells for storage and manipulation of qubits for quan-

tum gates, and transportation cells which act as building blocks of ballistic shuttling

channels (BSC). The Tile clusters sufficient physical qubits to allow the (1) execution

of basic set of fault-tolerant operations within the Tile and (2) communication with

qubits located in the different Tile. The physical qubits in the Tile can be classified

as

• Data qubits: These qubits constitute Steane logical qubit block.

• Ancilla qubits: These qubits are used in error-correction and fault-tolerant

logical operation.

• Communication qubits: These qubits are dedicated to form and purify com-

munication channels between Tiles.

These qubits are stored and operated in the memory cells while rapid communica-

tion to enable two-qubit gates for the fault-tolerant operations is facilitated by the

ballistic shuttling channels. These channels enable communication within the Tile

and also, in part, across the Tile. Using BSC laid down between the boundaries

of the Tiles, the qubits dedicated for communication from two different Tiles come

together to form several EPR pairs. These EPR pairs form entanglement channels

between Tiles which arbitrate inter-Tile logical gates using quantum teleportation

(please refer to section 2.2.5 to understand the teleportation protocol which phys-

ically transfers quantum information from one qubit to another). Before applying

67

Figure 3.3: Description of Compressed Quantum Logic Array Architecture

teleportation, EPR pairs were sanitized using purification protocols implemented as

quantum repeaters Briegel et al. (1998) which components the Tile.

The QLA architecture replicates same Tile design over the entire architecture.

This way it emulates multi-processor distributed system to enable maximally parallel

execution of quantum circuits. The speed comes at the cost of large number of

resources leading to substantial amount of hardware area 1m2 to factor 1024-bit

Shor’s algorithm.

Compressed Quantum Logical Array (CQLA) architecture

Compressed Quantum Logical Array (CQLA) architecture Thaker et al. (2006) in

Figure 3.3, reduces the QLA area by allocating just enough resources to match

parallelism quantum available in the quantum application circuit. It divides the

architecture into two types of regions:

68

• Memory Regions: These act as storage units for the logical qubit blocks and

support error-correction to retain their fidelity

• Compute Regions: These regions temporarily hold operand logical qubits for

computation. Once logical operation execution, the space is vacated for next

operation and operands are sent back to memory.

Using this organization, CQLA implements classical von-Neumann micro-architecture

for quantum computers. The communication component of the architecture was

leveraged from the QLA work. However, unlike QLA which tiles similar qubit blocks,

the CQLA regions comprise different types of blocks. Both memory and compute

regions contain blocks of ancilla qubits and the number of these blocks differs signif-

icantly. The compute region clusters large number of smaller ancilla blocks (Data-

to-Ancilla ratio 1:2) while memory regions contain fewer large size blocks (Data-

to-Ancilla ratio 8:1). Furthermore, different layers of encoding are used to protect

quantum data in each region. Two layers of encoding are deployed to enhance re-

liability of storage. Whereas, single encoding layer was used for faster processing

of gates in the compute regions. A fault-tolerant encoding code converter is used

to change the encoding layer of data as it moves across two regions. Using these

optimizations, CQLA provides 13x improvements in the area and 8x improvement

in the speed compared to the QLA architecture.

QALYPSO Architecture

QALYPSO architecture Isailovic et al. (2008) in Figure 3.4, recognizes that the crit-

ical path of quantum circuit execution is dominated by ancilla preparation used in

error-correction and fault-tolerant operation. By separating the preparation of an-

cilla state from the main stream computation (involving only data operands), overall

performance can be optimized. A lumped parameter called Area-Delay-to-Correct

69

Figure 3.4: Description of Qalypso architecture

Result (ADCR) is defined to capture the resource investment in the architecture

and performance of quantum application. QALYPSO design specializes in dedicated

ancilla prepartion units (called ancilla factories) which are separated from data pro-

cessing units (containing logical qubits blocks only). Depending upon the application,

the amount of ancilla preparation overhead is minimzed by (1) optimizing the layout

and the placement of ancilla factories (2) matching the production bandwidth of an-

cilla factory to the demand of data units. Multiple types of factories are introduced to

encompass both error-correction and magic state preparation. BSC connect factories

with data units while flexible entanglement channels fulfill long-distance communica-

tion for non-local gates between data operands. Moreover, unlike QLA and CQLA,

the architecture is equipped with different bandwidth channels in order to match

the application level communication needs. With flexible ancilla and communica-

tion resource distribution, QALYPSO architecture advances the state-of-art design

by improving ADCR of QLA, CQLA by 6 to 7 orders of magnitude. At the same

time it significantly reduces the area needed for Shor’s algorithm from 1m2 in QLA

to 76.6cm2 in QALYPSO.

70

3.2.3 Feasibility of Quantum Architecture

The generation of the above mentioned architectures utilizes scalable network of

planar ion traps. At the time of these proposals, it was anticipated that technology

advancements would soon deliver hardware which could trap and manipulate large

number of ions in the planar traps. A decade has passed since this pioneering work in

ion-trap architecture was first published, however, the scalability of planar ion-traps

still faces wide range of technological challenges Guise et al. (2014). For example it

has been noticed that the individual addressing of ions becomes prohibitively difficult

due to the geometry constraints of the planar traps chips containing in excess of

hundred electrodes. Hence processing very large number of ions in these chips seems

practically difficult. The problem of scalability can be tackled if reliable means of

connecting these restricted size chips can be found. On recent proposal envisions large

number of smaller trapped-ion units connected by fast optical switch network Kim

and Kim (2009). It combines two complementary quantum hardware technologies to

constructed an integrated hybrid-quantum computer which uses ions for computation

and photons to assist communication. The physics of trapped-ion hardware features

reliable quantum memory and local gates but sluggish for non-local interaction. In

contrast, photons which make relatively unreliable basic quantum components (poor

memory and noisier gates), are perhaps the only viable choice for long-distance multi-

qubit gates. Based on these complementary features, we now delve into the proposed

ModUlar Scalable Ion-trap Quantum Computer (MUSQIC) hardware.

3.3 MUSIQC Hardware

MUSIQC contains three main components Elementary Logic Units (ELU), recon-

figurable Optical Switch (OS) and photon processing circuitry (Beam splitters and

photon detectors) as shown in Figure 3.5. An ELU contains chain(s) of ions ei-

71

Figure 3.5: Description of Modular Scalable Ion-trap Quantum Computer
(MUSIQC) and its important components

Figure 3.6: Important components of an Elementary Logic Unit (ELU)

72

Figure 3.7: Description of heralded entanglement procedure to connect different
ELUs.

ther held as the Quantum Charged Coupled Device (QCCD) or in the small planar

traps described earlier. It acts as basic resource unit of computation to support

fault-tolerant operations on very small of logical qubit(s) contained within. The ions

inside an ELU are assigned specific computational roles. The data-ions hold phys-

ical qubits comprising logical block, the ancilla-ions map ancilla qubits needed in

the error correction and fault-tolerant operation, the entangling-ions (e-ion) which

form EPR pairs with the entangling-ions of the different ELU. See Figure 3.6 for

details. These ions are manipulated by lasers using Micro-Electro-Mechanical Sys-

73

tems (MEMS). This system provides finer control while steering the laser beam from

ion location to another within an ELU. It facilitates reliable addressing of individual

ions while preventing interference with neighboring ions Crain et al. (2014a).

Multiple ELUs are connected by establishing EPR pairs based entanglement chan-

nel between their respective e-ions. Using these channels, the logical qubits across

ELUs can undergo non-local two-qubit gates using local operations and classical

communication (LOCC). An N � N optical switch containing N input ports and

N output ports, can be configured to connect any pair of ELUs in the system. A

1000 � 1000 switches has already been demonstrated Kim et al. (2003). To generate

entanglement link between ELUs, the e-ions first need to communicate with their

remote partners using photonic interaction guided by the optical switch. A protocol

named ‘heralded entanglement’ Duan et al. (2004) entangles two e-ions as follows.

Each ion initialized to desired state, emits photon whose quantum state (polariza-

tion or frequency) is entangled with the spin of ion. The two emitted photons are

guided to interfere at 50/50 beam-splitter. After interference, the photons states

are measured in appropriate basis by optical detectors. The occurrence of successful

detection is a probabilistic event but it is heralded by the detector output. In brief,

the heralded entanglement first entangles ions with photons, then entangles the pho-

tons and measures them, hence indirectly creating an entanglement resource between

remote e-ions. The pictorial summary of this procedure is shown in Figure 3.7. The

resulting EPR pair allows non-local gates across the two ELUs via quantum tele-

portation Gottesman and Chuang (1999) (or similar) protocol which simply needs

classical communication preceded by the less costly quantum operations localized to

the ELU.

It should be noted that the heralded entanglement procedure has small success

probability due to technology limitations such as low photon collection efficiency

and imperfections of optical path length. Fortunately, it is possible to repeat the en-

74

tire procedure until entanglement is accomplished. Hence the effective rate of EPR

pair generation can be increased by investing more e-ions per ELU and photonic

hardware components which in turn requires multiple OS port per ELU. This leads

to significant resource overhead. Alternatively, we can use Pipelined Entanglement

Generation (PEG) Monroe et al. (2014) which relies on the observation that the la-

tency bottleneck in one round of entanglement is the ion initialization process taking

(1 µs), about 100 times longer than photon emission, transmission and detection

(collectively estimated to be 10 ns). This lopsided latency contributions can be used

to speed up the EPR pair generation process using PEG. This scheme also employs

multiple ions per port, however these are time-multiplexed in a way that another

ion which has already been initialized and have sent in its photon, occupies the port

for an entanglement attempt while initialization for previously unsuccessful ion is

underway. By hiding ion time consuming ion-initialization process through efficient

pipelining, PEG achieves high EPR pair throughput with relatively fewer resources.

The MUSIQC architecture modularizes the complex design of large scale quantum

system by recognizing the limitations of state-of-art technology. The hybrid assembly

of MUSQIC extracts good of both ionic and photonic worlds, while at the same time

countering the frailties of both technologies. Because of its enhanced versatility,

practicality and scalability, we choose MUSIQC as the underlying quantum hardware

for our performance simulation analysis. Following attributes summarize unique

features of MUSIQC hardware.

• It provides feasible means to scale trapped-ion based quantum without using

impractically large monolithic ion traps. MUSIQC can connect large number

of small sized trapped-ion chips using reconfigurable optical switch to allow

global connectivity

• It combines the distinguishing features of two candidate technologies: trapped-

75

ions for reliable storage and computation while photons for communication

channels. Such hybrid quantum system can benefit from rapid advances in the

techniques which integrate optical components on the trapped-ion chips

• The latency cost of slow EPR pair generation can be completely masked by

the execution time of essential fault-tolerant procedures which can be scheduled

in parallel with heralded entanglement. Based on the pace of technology ad-

vancement, the expected latency of EPR pair generation takes around 5, 000µs

which can be smaller than the time spent in one round of layer-2 error correc-

tion (ranging from 5, 000�48, 000µs depending upon frequency of layer-1 error

correction). Comprehensive details can be found in chapters 6 and 7.

• Since the speed of photons is negligible compared to the shuttling speed of ions,

the latency of communication is entirely dominated by EPR pair generation

and therefore independent of spatial distance between the distant qubits. The

distance-oblivious global connectivity allows speedy execution of the quantum

arithmetic circuits comprising several long distance gates (e.g., QCLA). These

circuits are extensively used in Shor’s algorithm.

3.4 Architecture Support in MUSIQC Hardware

Several remarkable features of MUSQIC hardware allows us to define range of archi-

tectures by varying resource allocation and interconnection hierarchy. An architec-

ture built on MUSIQC hardware can easily emulate previously proposed designs. For

example, Tiles in QLA, CQLA and QALYPSO can be mapped to the ELUs while

long distance ballistic shuttling channels can be simulated by the optical channels.

In addition, a vast architecture space spanned by the size, and composition of qubit

resources in the ELU as well as the hierarchy and topology of optical switch net-

work can be analyzed for interesting resource-performance trade-offs. In chapter 5, 6

76

and 7, different types of architecture realized from MUSIQC hardware will be stud-

ied which will guide us to choose appropriate design for given quantum application

circuit.

3.5 Summary

In this chapter we presented trapped-ion as candidate technology to construct quan-

tum computer. The qubit information was stored in the internal energy states of

the ions. The quantum gate was realized by changing these energy levels by firing

appropriate frequency lasers on the operand ion qubits. We also described that role

oriented clustering of ion qubits, hardware constraints and benchmark performance

optimization necessitated the study quantum computer architecture. We surveyed

a generation of trapped-ion based architectures proposed in the last decade and de-

tailed their merits and demerits. Because the scalability of these design critically

hinged on building prohibitively large planar ion traps, the next generation quan-

tum architecture MUSIQC was proposed which connected small ion trap chips using

photon assisted fast communication channels. Several distinguishing features of this

architecture were presented of which practicality and scalability were the most promi-

nent. We showed how MUSIQC modularized the construction of large scale quantum

computer using the advances in optics technology and efficiently executed the arith-

metic circuits acting as building block of Shor’s algorithm. The qualitative prowess

of the MUSIQC presented at the end of the chapter will be quantified in the second

half of the thesis which studies the performance of running practically interesting

quantum circuits on this hardware.

77

4

Our Design and Performance Simulation Tool Box

4.1 Introduction to the Design and Performance Simulation

4.1.1 Motivation Behind the Simulation

The development of a large scale quantum computer falls in the initial design stages as

experimental efforts have produced small sized computers. There are two important

pillars of these effort which can be conceived as basic framework of quantum system

design. First, the quality of quantum device technology needs speedy improvement to

provide reliable components for basic quantum computation. Second, a mechanism

must be carefully devised to integrate these components at a very large scale to

construct fully functional quantum system capable of solving real-world problems.

The quality of hardware depends on the physical attributes of the quantum device

technology while the integration depends on the architecture of the system resources

which are needed to execute quantum application. As noted in previous chapter that

the inefficiencies of physical hardware can be compensated by designing adequate

resource architecture. Naturally, when both hardware and architecture parameters

are taken into consideration, the combinatorial design space substantially increases.

78

The spectrum of feasible designs is often spanned by the optimistic values of the

parameters which are essential to achieve desired level of performance. Based on

the targeted parameter values, the technologists and architects can be guided to

focus on specific aspects of the system design which needs crucial improvements.

However, as quantum device technology continues to evolve and new ways integrating

device components are invented the emerging candidate design inevitably changes

the standards for system parameters. In order to evaluate dynamically changing

vast design space we need an efficient software tool which can not only model system

components using appropriate parameters, but also estimates the performance of

quantum algorithm execution on chosen design. The important features of such tool

can be listed as:

• Modeling system hardware and architecture using appropriate set of parameters

• Synthesizing circuit from the quantum algorithm

• Mapping the qubits of quantum circuit on the hardware

• Scheduling the gates of quantum circuit on the hardware

• Evaluating the resource requirement and performance of quantum algorithm

from scheduled circuit.

4.1.2 Deficiencies in the prior tools

A number of software tools had been developed which contained these features in

whole or in part. These contribution explored various mapping and scheduling tech-

niques in order to optimize performance and resource requirements for some chosen

hardware and architecture. Using these tools significant advances were made towards

refining a design of scalable quantum system some of which were highlighted in the

last chapter. However, there are three important deficiencies in the work related

79

to the prior tools. First, the resource-performance analysis assumed fixed hardware

parameters while led to less flexible design choices. The evolution of device tech-

nology in the past decade has raised questions about the assumptions under which

those tools hard coded the hardware parameters. Fixing parameter values limits our

horizon which can result in ignoring superior candidate designs. Second, these tools

do not provide breakdown of overall performance metrics into meaningful compo-

nents indicating system parameters crucial for the chosen design. In other words,

it is difficult to estimate the performance improvement (or degradation) by tuning

specific hardware or architecture parameters. Third, the previous work does not

provide suitable yardstick to test the resource-performance scalability of proposed

design. For example, as application size increase, how does the performance behav-

ior change under different scale of qubits resources? An important problem in the

ongoing experimental efforts is to calculate the maximum size of application which

can be executed within fixed number of qubits in the system. Although existing tools

may adequately optimize quantum system for fixed size application (e.g.,Shor’s algo-

rithm), they do not justify why does the chosen design provide desired performance

level as application size continues to increase. These interesting insights for missing

for two reasons (i) they are not equipped with the flexible framework of analyzing

resource-performance trade-offs and (ii) they do not provide any suitable means to

visualize the utilization of various system resources.

4.1.3 Unique features of our tool set

We present a performance simulation tool which addresses the these aforementioned

deficiencies. Our tool adds following new features to those listed in 4.1.1.

• It explores vast combinatorial design space by simulates performance over vary-

ing hardware technology and architecture parameters.

80

• It provides detailed breakdown of resource and performance variables which

can estimate the desired level of improvement in the system parameters for

chosen design.

• It enables visualization of resource utilization, changing application size and

analyzing the performance behavior under different budget constraints.

By using these new capabilities of our tool, we were able to conduct comprehen-

sive analysis of resource-performance trade-offs as function of system parameters for

different benchmark applications. The insights obtained from the analysis can be

used to direct the endeavor to build scalable quantum computer systems. Before

providing the details of our tool, we briefly discuss the specific contributions of prior

related work. We then detail different components of our tool box, their integration

and unique features that lie at the heart of this thesis.

4.2 Brief Survey of Prior Tools or Infrastructures

One of the very first proposal of tool chain was introduced by Svore et al. (2004).

The basic framework of compiling quantum algorithm into technology specific micro

instructions were throughly laid out. However, it was Balensiefer et al. (2005a) who

featured first complete basic tool which contained a module to compile high level

quantum application into equivalent fault-tolerant quantum circuit. The circuit was

translated into the sequence of low level quantum micro-architecture instructions for

trapped-ion hardware. The performance of circuit execution was evaluated a simu-

lator called QUALE Balensiefer et al. (2005b). One of the major contribution of this

work was the efficient calculation of the failure probability of different circuit com-

ponents without performing full blown quantum state space analysis. The Metodi

et al. (2006) investigated the scheduling of quantum gates in the planar ion traps.

The tool converted quantum gate into sequence of low-level physical qubit move-

81

ment operations which were scheduled on the hardware through careful resolution of

routing congestion.

The Whitney et al. (2007) specialized in comprehensive the Computer Aided

Design (CAD) flow to support automated design and layout of fault-tolerant quan-

tum circuit on trapped-ion hardware. The work pioneered sophisticated modeling

of planar ion trap architecture. It recognized that the finding the optimal layout

of quantum circuit on the hardware was at least as hard as counterpart problem

in classical VLSI design. Therefore it introduced several heuristic based interesting

mapping and scheduling techniques which were used for placement and routing of

large sized quantum circuits. The layout was optimized for the design Shor’s al-

gorithm architecture Whitney et al. (2009). In addition general trade-offs between

area and latency (execution time) were studied and guidelines for optimal design

were also presented. The Patel (2010) complemented this work by studying greedy

heuristics and linear-programming based approximation to optimize the network de-

sign component of the quantum computer systems. Both Whitney et al. (2007) and

Patel (2010) were utilized to analyze Qalypso architecture Isailovic et al. (2008).

Dousti and Pedram (2012) introduced a tool called Quantum mapper based on

Scheduling Placement and Routing (QSPR) for planar ion traps. Using this tool,

the overall execution time of quantum circuit was significant minimized (reportedly

41%) compared to prior work Balensiefer et al. (2005b) using (1) improved placement

of qubits and (2) advanced shuttling techniques to minimize qubit traffic congestion.

The Dousti and Pedram (2013) provided an efficient method of quantifying circuit

execution time without explicitly scheduling it on the hardware. The efficient tool

called quantum algorithm latency estimator (LEQA) could directly compute the la-

tency from the closed form expression describing critical path of quantum circuit.

The tool runtime was one to two orders of magnitude faster than Dousti and Pedram

(2012) for range of benchmarks circuits. The SQUASH tool Dousti et al. (2014) ex-

82

amined mapping problem wherein ancilla qubits could be dynamically shared among

fault-tolerant operations. This reduced overall resource overhead at the expense of

increased latency. These trade-offs were analyzed using multi-core reconfigurable

quantum processor named Requp. This architecture which improved CQLA Thaker

et al. (2006) using flexible ancilla allocation in the compute regions. The tool set

Dousti and Pedram (2012, 2013); Dousti et al. (2014) was used to optimize the per-

formance of a trapped-ion based universal logical block, capable of performing any

logical fault tolerant operation Goudarzi et al. (2014).

The tools described above assumed trapped-ion technology as underlying quan-

tum hardware. The benchmark circuits were encoded using concatenated codes. It

should be noted that the tools for technologies other than trapped-ion and have also

been developed. For example, a tool called Autotune Fowler et al. (2012b) could

accurately compute and optimize failure rate of quantum circuits encoded using

topological code, mapped on neutral atoms quantum hardware. In Maslove et al.

(2008); Maslov et al. (2007) quantum circuit placement on the Nuclear Magnetic

Resonance (NMR) hardware was formalized and a heuristic based algorithm was

proposed. However, the analysis was restricted to small quantum circuits with no

details of automated tool included in the papers.

We would conclude this section by differentiating performance simulation with

actual simulation of quantum circuit which is beyond the scope of this thesis. The

actual simulation deals with the efficient management of state space spanned by

the quantum system. In principle, an n-qubit quantum circuit requires 2n complex

quantities to be stored and manipulated. This exponential resource requirement

hardens the simulation of large quantum circuit on classical computer. A set of

interesting methods of simulating general quantum circuit and related tools can be

found in Viamontes et al. (2009); Garcia and Markov (2013); Viamontes et al. (2003);

Gottesman (1998a); Aaronson and Gottesman (2004). In contrast the performance

83

simulation described above, evade this problem by only keeping track of variables

of interest. These include infidelity of quantum state or the failure probability of

physical or logical qubits, and total execution time as quantum circuit is scheduled

on hardware.

4.3 Our Design and Performance Simulation Tool Box

The intention of designing a new toolbox is to obtain detailed insights into the

key factors involved in resource overhead and performance gains (or degradation)

when quantum algorithm is execution on a realistic quantum device. We chose

to model MUSIQC as primary hardware for our analysis Steane using [[7,1,3]] error

correcting code to generate fault-tolerant circuits. Technologies other than MUSIQC

and concatenated codes other than Steane can be supported with slight modification

in the basic infrastructure of our tool. The overall flow in the tool chain is given in

Figure 4.1

There are two main components in the tool: Tile Designer and Performance

Analyzer (TDPA) and Architecture Designer and Performance Analyzer (ADPA).

TDPA works in the back end of the tool and simulates the fault tolerant construc-

tion of the logical qubit operations using specified Device parameter values. The

Fault Tolerant Circuit Generator synthesizes the logical operation by specifying

physical qubits and sequence of physical gates. The Tile Builder constructs an

Tile emulating the capabilities of an ELU which acts as basic computational unit to

execute fault-tolerant operation. The Tile is designed according to the user specified

ratio between different types of qubits such as data, ancilla and communication. The

Low Level Mapper maps qubits of the circuit to the physical qubits in the Tile

and Low Level Scheduler generates an order in which gates needed to be sched-

uled in the circuit. Low Level Error Analyzer computes the failure probability

of the specified fault tolerant quantum operation based on the output of the. The

84

Figure 4.1: Different components of our tool and their interconnectivity

Tile parametrized by DP and the performance metrics is stored in Tile Database.

ADPA is the front end of the tool that interfaces with the user. It takes user-

specified architecture design parameters as inputs and defines architecture by placing

and connecting different types of Tiles obtained from Tile Database. These Tiles

contain logical operands of the application circuits generated by Quantum Circuit

Generator. The High Level Mapper maps logical qubits to Tiles grouped in

large clusters (called Segments) described in chapter 6. High Level Scheduler

maps application level gates into the sequence of logical gate operation and controls

the data movement across the hardware, outputting total execution time (latency)

of the circuit and resource count. High Level Error Analyzer calculates suc-

cess probability of the overall scheduled logical circuit. The Performance Metrics

Decomposer provides the detailed breakdown of performance metrics (such as exe-

cution time and failure probability) from scheduled output. Finally, the Visualizer

85

provides pictorial representation of circuit execution indicating utilization of different

types of resources. The flexibility of changing device and architecture parameters,

the splitting of performance metrics and visual representation of resource usage de-

fine prominent characteristics of our tool chain. The rest of the chapter is dedicated

to the detailed description of various tool components described above.

4.4 Fault-Tolerant Circuit Generator

It synthesizes an acyclic dependency graph (DG) from the given fault-tolerant quan-

tum circuit implementing a logical operation. The circuit gates are mapped to the

nodes while the dependencies among the operations are translated into the directed

edges of the graph. The node is specified by a set of following variables.

• Operation name: The name of quantum operation

• Operand qubits: The identifiers of qubit operands

• Start time: The time (in µs) before which the operation can be scheduled

• Execution time: The execution time (in µs) of an operation

• Parent nodes: The list of immediate predecessors of the node

• Children nodes: The list of immediate descents of the node

• Dependency height: The number of nodes in the circuit which cannot be sched-

uled before this operation

A sample construction of a dependency graph from quantum circuit is shown in

Figure 4.2. The graph makes enables for the Low Level Scheduler to simulate the ex-

ecution of gates in correct order and timing information. When DG is used to model

fault-tolerant operation, the nodes act as constituent physical operations which needs

86

Figure 4.2: Converting quantum circuit into equivalent dependency graph. Note
that PA,PB and PC represent Pauli gates.

to be properly annotated with additional variables. These new pieces of information

defines the role of physical operation in the context of macro operation (such as

transversal logical gate, state preparation, syndrome measurement etc.) and they

are crucial in avoiding scheduling deadlocks and resource reuse. Thus based on the

fault-tolerance needs of DG, we add following new variables to the in the description

of node:

• Operand type: Labels qubit operand as data or ancilla

• Operation type: Categorizes physical operation in the context of macro oper-

ation.

• Logical qubit: Specifies for which logical qubit is this physical operation con-

stituting the macro operation.

87

• Syndrome measurement ID: Identifies the measurement whose result registers

the syndrome value (+1 or -1)

• Syndrome type: The type of syndrome measurement (X or Z)

• Failure probability: The probability that operation was unsuccessful

We know ancilla qubits play vital role in the fault-tolerant operations. During

the execution of sequence of fault-tolerant operation, the ancilla qubits are repeat-

edly prepared in specific state, interact with data and finally measured. After the

measurement ancilla can be re-initialized for similar tasks, thus allowing dynamic

allocation. To capture this effect, we make a prototype of ancilla qubits contain-

ing two variables to describe its status(i) ancilla context: indicates macro operation

which is currently using the ancilla (ii) associated logical qubit: designates which

logical qubit macro operation is employing the ancilla. During the scheduling, the

variables ancilla context and associated logical qubit of ancilla qubit are compared

with variables operation type and logical qubit of the node in order to synchronize

the ‘software’ operands with physical qubits. Ancilla status dynamically changes be-

tween ‘inuse’ (when occupied by macro operation) or ‘available’ after it is measured.

This way Low Level Scheduler can schedule fault-tolerant operation with different

number of physically available ancilla qubits in the system.

4.5 Low Level Mapper

The Low Level Mapper assigns qubits in the circuit to the ions in the ELU (or

Tile). During this assignment, we want mapper to place frequently interacting qubits

‘closer’ to each other so that communication cost can be minimized. The ‘frequency’

of interaction among qubits depends upon the connectivity of multi-qubit gates in

the circuit. We can simplify mapping problem by converting quantum circuit into a

88

familiar data structure such as that chosen for the Fault-Tolerant Circuit Generator.

A quantum circuit can be transformed into an undirected graph called connectivity

graph whose vertices correspond to qubits and edges signify two-qubit gates between

qubits. The weight of an edge is a positive integer indicating the recurrence of CNOT

or CZ between the qubits. The three- or more operands gate, a clique is introduced

which increments the weight of edges between operand nodes by 1. The formulation

of connectivity graph allows us to solve mapping problem by using wealth of computer

science algorithmic techniques. Specifically, in case of MUSIQC architecture, the

mapping requires qubits to be first distributed among ions in the ELUs such that

the number of CNOT/CZ whose operand are mapped to different ELUs is minimized.

The main motivation to minimize inter-ELU gates is that they tend to be resource

consuming and time expensive due to non-local nature of communication. Reducing

the number of such gates is the first task of Low Level Mapper which can be reduced

to the following Qubits Partitioning Problem:

4.5.1 Qubit Partitioning Problem Definition

Qubit partitioning problem accepts connectivity graph G(V , E) and ELUs and their

capacities (tELUi, Siumi�1) pairs as input and asks for distributing vertices V among

fixed capacity ELUs (partitions) such that @i,j, ViXVj � φ, V1YV2YV3 � � �YVm � V

and @k�t1,2,...,mu, |Vk| ¤ Sk . Note that Si is the capacity of ELUi. The objective is

minimizing total number of edges eab P E across partitions va P ELUi, vb P ELUj
where ELUi � ELUj. These edge crossing correspond to inter-ELU gates. The

constraints are sizes of partitions; that each partition (ELU) cannot hold more ver-

tices (ions) than its capacity. It is known that this kind of partitioning problem is

NP-hard.

Assuming that once qubits are optimally partitioned, they need to be assigned to

specific ions trapped as linear chain(s) inside ELUs. During placement, we want to

89

minimize the communication cost inside an ELU by maximizing the locality among

the qubits. The cost is a function of spacial distance between ions which map the

qubits. Regardless of number of ion chains, we can easily leverage QLA Tile abstrac-

tion (Chapter 3, Figure 3.2(a)) to model the arrangement of ions inside ELU. We

show that solution of placement problem for single chain can easily be used for the

multiple chain case as well as for the partitioning problem described earlier. In case

of single chain comprising n-equidistant ions (vertices), we can formalize the qubit

placement problem as follows:

4.5.2 Qubit Placement Problem Definition

Qubit placement problem accepts connectivity graph G(V , E) to map each vertex

vk to point xk on a straight line (specified by equidistant neighboring points) such

that the quantity
°
i,j wij|xi� xj| is minimized. The points are labeled 1, 2, 3, . . . , n.

The wij is the weight of an edge between vertex vi and vj in G. This problem is also

called as optimal linear arrangement problem.

Solution to the Qubit Placement Problem

The qubit placement problem is also NP-hard which means that there is no known

polynomial time algorithm which finds optimal solution to the general form of this

problem. Therefore, we rely on an approximate algorithm Andreev and Racke (2006)

providing ‘approximately optimal’ solution efficiently. The Table 4.1 describes graph-

theory algorithm for the qubit placement problem. It converts adjacency matrix

representation of the connectivity graph G(V ,E) into corresponding Laplacian matrix

SpGq which is positive semi-definitive. When diagonalized, the spectrum of SpGq
produces non-negative eigenvalues λi ¥ 0. We obtain eigenvector V2 corresponding

to the second smallest eigenvalue λ2. Index the components of V2 using vertex

identifiers xi for i � 1, 2, 3, . . . , n. Thus, we can associate V2r1s with vertex 1,

90

Table 4.1: Qubit Placement Algorithm Steps

1. Obtain Laplacian matrix SpGq of the adjacency matrix representation of
Connectivity Graph G(V , E).

2. Diagonalize SpGq. Let λ1pGq ¥ λ2pGq ¥ λ3pGq . . . ¥ λnpGq are sorted n
eigenvalues.

3. Find eigenvector V2 corresponding to second smallest eigenvalue λ2pGq.
4. Index V2 by vertex number xi for i � 1, 2, 3, . . . , n.

5. Sort V2 to obtain V 1
2 . For each xi, find new index j by comparing V2ris �

V 1
2rjs.

6. Place vertex xi at location j on the line.

V2r2s with vertex 2 and so on. Finally, the placement position of vertex xi is the

index of V2ris in sorted V2. The time complexity of the algorithm is dominated by

the computation of eigenvector V2 which can be done in polynomial time (in the

number of vertices n). Even though Andreev and Racke (2006) did not provide

the theoretical approximation of solution optimality, based on our experience, the

algorithm generally outputs sufficiently adequate qubit placement when tested on

range of quantum circuits. The algorithm also runs fast in practice. A sample

application of this algorithm is shown in Figure 4.4.

In case of multiple chains, we can first map qubits to ions in the single chain and

then fold the chain into a 2-D serpentine shape, see Figure 4.3. The philosophy of

this technique lies in the observation that folding the chain in this manner preserves

the locality among the qubits. To see this, define spatial distance between mapped

qubits as the number of intermediately placed qubits in a 2-D grid. We find that

spatial distance between qubits can only reduce when we when the chain is folded

onto the grid. Hence the algorithm in Table 4.1 can easily be extended to multiple

chains. To solve qubit partitioning problem, we note that the one long chain mapping

91

Figure 4.3: Demonstration of folding 1-D Chain onto 2-D grid to map multiple
chains in ELU

all the qubits can be split into smaller chains, one for each ELU. Thus if the capacity

of each ELU is k qubits, we can partition the chain into adjacent rn
k
s sub-chain

partitions similar to that in Figure 4.3. However, the number of resulting inter-ELU

gates can increase if the weight of an edge between qubits located at partition border

is large. Fortunately, a careful investigation revels that pair of qubits never interact

‘too frequently’ in most quantum circuits of our interest. Therefore, the edge weights

are generally bounded by some small integers which allows us to employ the efficient

partitioning solution with negligible loss of optimality. Hence Table 4.1 algorithm

solves both partitioning and placement problem.

One of the distinguishing feature of our tool is the ability to simulate quantum

circuit containing more qubits than the physical ions present in the system. So far we

have assumed one-to-one mapping between qubits and ions. This is assumption can

be satisfied for data qubits which generally stay ‘alive’ till the end of computation. On

contrary, the reusable qubits (ancilla or communication) are ‘short lived’ because they

are consumed rapidly. For example, the ion allocated for an ancilla qubit can easily

map another ancilla once the first ancilla is measured. Although dynamic allocation

of reusable qubits can be handled during the scheduling, however, it invalidates

one-one-mapping assumption when available of ions are fewer in number than the

reusable qubits in the quantum circuit.

92

Figure 4.4: Demonstration of solution to qubit placement problem

For a hardware containing m ions dedicated to map k reusable qubits, then for

k ¡ m, there are at least k
m
P k
m possible mappings fpkq Ñ m. Instead of searching

through all possible mapping functions, Low Level Mapper can learn the pattern in

which reusable qubits are utilized and interact with data qubits during fault-tolerant

operation. If this pattern can be learned by running the Low Level Scheduler without

considering physical qubit map. During this run, the scheduler will dynamically

allocate k reusable qubits to m hardware ions, thus providing us with unique fpkq Ñ
m. Once this auxiliary run of scheduler is complete, the mapping function is obtained

to enable Low Level Mapper construct the correct connectivity graph whose nodes

represent physical ions instead of circuit qubits. This new graph is called ‘physical

93

Figure 4.5: An example circuit shows how one quantum circuit generates different
physical circuit graphs for different physical ions dedicated to ancilla qubits

circuit graph’. Figure 4.5 shows that same quantum circuit generates two different

physical circuit graphs depending upon different number of ancilla ions to map ancilla

qubits. The physical circuit graph is then used by qubit partitioning and placement

algorithms to complete the role of Low Level Mapper.

4.6 Low Level Scheduler

Scheduler takes mapped hardware and generates the execution order of gates in the

given quantum circuit by outputting the time Tstart at which the gates is begins

execution. The time Tfinish at which gate execution ends is the sum of its execution

time Texec and Tstart. The main challenge of scheduling lies in dynamic allocation

of reusable qubits and hardware-imposed constraints on the execution of gates. A

typical set resource constraints considered in the Low Level Scheduler includes limited

number of:

1. Lasers

94

2. Ancilla ions

3. entangling ions

The number of available lasers bounds the concurrently executable gates, fewer an-

cilla ions increases the latency of fault-tolerant operation while small number of

entangling ions will reduce the bandwidth of quantum communication channel.

For scheduling, a dependency graph is generated from the fault-tolerant quantum

circuit. The structure of the graph ensures the correctness of circuit scheduling.

A directed edge from node i to node j in the graph means that gate j of circuit

cannot be scheduled before gate i is executed. Our Scheduler in Algorithm 1 works

in an iterative way: In each iteration, a set of mutually independent nodes(gates)

is selected for execution and removed from the graph, along with their outgoing

edges. These nodes had no parent nodes and their removal would pave the way for

their children nodes to be scheduled in subsequent iteration. After satisfying gate

level dependencies, the nodes are further short-listed due to insufficient hardware

resources to schedule all selected gates. The gates are screened for their usage of

entangling ions, followed by their consumption of ancilla ions. When resources are

fewer than candidate gates, the ones with higher dependency height are selected. The

chosen gates are then dispatched and their respective order of execution is determined

by constraints on lasers. This is similar to classical instruction processing wherein

processor maintains reorder buffer and incoming instructions are queued until their

operands are available. Here, the operands correspond to qubits and number of slots

in reorder buffer which models the sets of lasers in our case.

The dynamic resource allocator within the scheduler is responsible for deadlock-

free scheduling through careful management of resource assignment and release. The

most frequent tasks encountered in scheduling are fault tolerant protocols largely

containing quantum error correction. It often requires a minimum number nmin of

95

ancilla qubits to schedule main subtask of syndrome calculation, which is composed

of three steps. In the first step, it needs fresh ancilla prepared in an appropriate state

(e.g., a maximally entangled state of several qubits), which amounts to resource as-

signment. In the second step, ancilla interact with data to obtain the signature of

the error. In the last step, ancilla are decoded and measured to extract final error

information. Once measurements are performed, ancilla qubits are released and can

be reused for another syndrome calculations or other tasks. The syndrome calcula-

tions subtasks can be scheduled in parallel if sufficient ancilla qubits are available,

or (partially) in series otherwise. When fully parallel scheduling is infeasible due

to limited availability of ancilla qubits and the resource allocator distributes ancilla

such that each one is assigned less than nmin ancilla, the schedule can potentially

encounter deadlock because none of the subtasks can be completed and no allocated

ancilla can be freed for other (sub)tasks. Therefore, a smaller quantum computer

can suffer from scheduling deadlock due to inefficient resource allocation.

To address this issue, our resource allocator follows ‘all or nothing’ strategy, where

each subtask is scheduled only when enough ancilla are available for its completion.

In addition, scheduling of operations within each subtask is prioritized to facilitate

quick ancilla release. This is achieved by assigning highest priority to the measure-

ment since they free qubits to be used by other tasks. The same strategy is applied

to entangling ions resource management, except that in case of constraint, the as-

sociated tasks are operations local to ELU for each non-local CNOT J. Eisert and

Plenio (2000) and can be scheduled with only one entangling ion per ELU. On the

contrary, the laser constraint does not create any deadlock since unlike quantum re-

sources which are freed only after qubit measurement of qubits, the classical resource

laser can be released and reused once the current operation (whether it is a gate,

preparation or measurement) is completed.

96

Input: Dependency graph GpV,Eq with vertices V for gates in the circuit and
directed edges E for dependency between gates
Output: List containing pairs pvi, T vistartq, vi P V for start time of each gate
initialization @i P V Setpvi, 0q.
Define for a vertex x, T xfinish � T xstart � T xexec
while V is not empty do

S ÐÝ Independent vertices from V ;

if S doesnot satisfy constraints on entangling ions then
S1 ÐÝ e-bit independent nodes in S;

@i P S � S1, T
i
start � minjPS1 T

j
finish

end

if S1 doesnot satisfy constraints on ancilla ions then
S2 ÐÝ ancilla independent nodes in S1;

@i P S1 � S2, T
i
start � minjPS2 T

j
finish

end
Dispatch left over nodes in S2 for execution and update their Tstart as:
@i P S2, T

i
start � min1¤j¤Number of Lasers L

j
avail

� Ljavail is the time when jth laser is available
Update V ÐÝ V � S2

for gate P S2 do
T gatefinish � T gatestart � T gateexec

for w P tchildren of gateu do
Twstart � maxpT gatefinish, T

w
startq

end

end

end
Algorithm 1: Scheduling Algorithm

4.7 Low Level Error Analyzer

The low Level Error Analyzer estimates the failure probability of the scheduled fault

tolerant operation using Fault Counter Method. A similar technique was proposed

in Aliferis et al. (2005) as part of quantum threshold theorem proof, however, it

lacked actual implementation details. We implemented this method to construct our

Low Level Error Analyzer. In order to explain this method, we specifically define

two important terms: physical failure probability and the logical failure probability.

The physical failure probability of a noisy quantum component (physical operation

97

or memory) is the possibility that it introduces a bit-flip error (X) error, phase-flip

(Z) error or both (Y error) in the operand qubit(s). For our analysis, we assume

depolarizing channel as our underlying error model in which all X, Y and Z error

occur independently with same probability p. The logical failure probability of a

noisy logical quantum component (physical operation or memory) is the possibility

that it introduces a logical bit-flip error, phase-flip error or both (logical Y error) in

the operand qubit(s). The logical error is established if the error correction step fails

to correct the errors in the operand logical qubit.

The fault counter method computes the logical failure probability of the opera-

tion from the physical failure probability by counting the number of ways in which

physical errors propagation resulting in the logical failure. A fault tolerant circuit

block constructed for an error correcting code of distance d, can perfectly recover

from k errors occurring anywhere in the block if k d. However for k ¡ d, errors

propagation can result in the incorrect logical state of the qubit with probability

O(pk). Since our analysis is based on distance-3 Steane [[7,1,3]] code, events contain-

ing two or more errors cause the logical failure should be counted. However, when

p is small (we assume p = 10�7 in our chapter 6,7 simulations), the higher order

terms in the logical failure probability O(p3), O(p4), . . . can be neglected at the

cost of nominal inaccuracy. Hence fault counter simply counts number of failures C,

resulting from exactly two-errors events.

Based on our error model, we define two-error event by introducing a combination

of Pauli X or Z gate at two different locations in the circuit block. Since each

error models physical fault, the probability of a two-error event is p2. We need

to test whether such event corrupts the logical state of the qubit as these errors

propagate through the circuit. The error propagation is equivalent to commuting

the corresponding error Pauli gates through the constituent circuit gates according

to the Table 2.4. The logical failure is detected when the logical qubit acquires

98

Figure 4.6: An example demonstration of fault counter method to distinguish
between benign error event, genuine error event and single error event.

uncorrectable error combination at the end of propagation. If a two-error event

results in the logical failure it is termed ‘genuine error event’, otherwise, it is labeled

‘benign error event’. An example distinction between genuine and benign errors is

shown in Figure 4.6(a,b). This procedure is repeated for all combinations of two-error

events each occurring at
�
n
2

�
locations for a circuit block containing n possible fault

sites. This way, the fault counter computes total number of genuine error events C

causing logical failures and outputs logical failure probability as Cp2.

During the execution of the fault tolerant quantum algorithm, single-qubit errors

occurring in different a fault tolerant operation can also accumulate to produce log-

ical failure in the logical qubit Q. For example, if Q undergoes sequence of gates:

HLXLSLZL, a bit-flip error occurring in HL and Y error arising in XL can lead to

the logical error in Q when these error fall on different constituent physical qubits.

Such error-event can be accounted for by tracking the probability that fault-tolerant

99

block produces single qubit error in the logical qubit. We call this Block Physical

Failure Probability (BPFP). In order to accurately model the error propagation, for

each logical qubit we keep track of its logical failure probability as well as Block

Physical Failure Probability.

The basic philosophy behind recording BPFP is that a logical qubit containing

single qubit error can be considered as ‘logically correct’ (since single error can be

corrected by error correction) but ‘physically incorrect’. To illustrate this concept,

consider an imperfect transversal gate which can introduce a single qubit error into

perfect logical qubit. As a result the BPFP level is raised for the operand logical

qubit. The acquired single qubit error can be corrected in subsequent error correction

steps which amounts to the reduction in BPFP. During the execution of quantum

algorithm, regular error correction on logical qubit ensures that the accumulated

physical error probability remains within acceptable limits. Therefore by controlling

BPFP, error correction preserves the correct state of the logical qubit. On contrary

when error correction is scarcely executed, BPFP may grow to dangerously large

value, resulting in the logical failure. Thus BPFP is translated into logical failure

probability when error correction projects logical qubit into the code space. After

error correction is performed, BPFP is reset to initial value precomputed by the fault

counter. The BPFP can easily be computed by considering all single-error event in

the circuit block which result in single qubit error in the logical qubit. An example

of single-error contributing to BPFP is shown in Figure 4.6(c). It should be noted

that only error correction and operator measurement operations reset BPFP value

by explicitly translating BPFP into the logical failure probability. All other fault-

tolerant operations monotonically increase its value since they are not entitled to

interpret the logical state of the qubit.

The main advantage of BPFP will be highlighted when we explain how High

Level Error Analyzer calculates the overall failure probability of the entire quantum

100

algorithm for different insertion configurations of error correction. For now, we con-

clude this section by explaining the implementation details of Low Level Analyzer.

The main task of this tool component is to identify error events which propagate to

logical qubit block. Since fault-tolerant operation for Steane code are made of Clif-

ford group gates, we can easily track error propagation by commuting corresponding

Pauli operators with the circuit gates. A frame of Pauli errors is constructed after

propagation through each gate, at the same time we also register the set of stabilizers

whose joint +1 eigenvalue eigenvector describe the quantum state of the circuit after

each gate. After each gate, we test if the updated pauli error frame falls into the

stabilizer space, in which case the event is termed benign, otherwise the propagation

continues. The propagation is also terminated if an error is caught during cat-state

verification used in operator fault-tolerant operator measurement. The complete

description of fault counter testing two-error event is provided in Algorithm 2.

4.8 Tile Database

Tile data base stores the resource and performance parameters of an ELU defined

in the general framework of Tile (see section 3.2.2 for details). These parameters

describe the qubit resource investment and the quality of the fault-tolerant operation

localized to the Tile. These are listed as follows:

1. Set of supported logical operations

2. Layers of encoding

3. Area (total QLA cells) and dimensions

4. Total physical qubits

5. Operation execution time

101

6. Operation logical failure probability

7. Operation block physical failure probability (BPFP)

The parameters (1)-(4) come from user specified design while (5)-(7) are calculated

from computed from Low Level Mapper, Scheduler and Error Analyzer. When multi-

ple layers of encodings are used, the resource and performance numbers can be calcu-

lated by either direct flattening of the fault-tolerant circuit or hierarchical evaluation

of higher layer Tile parameters from precomputed lower layer Tiles parameters. The

hierarchical method is useful in two ways: first it modularizes the construction of

higher layer Tiles by assembling different types of lower layer Tiles. Second, it pro-

vides a convenient framework to optimize resource overhead by (i) allocating reusable

qubit at each layer according to its computational load (ii) assembling lower layer

Tiles to perform multiple tasks for Tiles at higher layer of concatenation. The frame-

work of cross-layer optimization is an integral part of our tool, which will be detailed

in chapter 7. Once adequate Tiles are designed and parametrized, they are stored

in the Tile Database. It should be noted that Tile object stored is associated with

assumed values of device parameters which determine its performance. Multiple Tile

objects with varying performance levels can be created and stored for different sets

of user specified device parameters. These Tiles can be assembled and connected

in several different ways to define variety of architectures to graph algorithm level

circuit in ADPA.

A parametrized Tile provides a macro-model to define quantum architecture

which can schedule application level quantum circuit. The logical qubit of the en-

coded circuit are mapped to the block of physical qubits inside the Tile and logical

gates are translated into the functional roles of the Tiles. In chapter 6,7 we use

Tile macro to abstract trapped-ion hardware unit containing one application level

qubit which is an operand of a gate, application level ancilla for error-correction or

102

magic-state preparation or an e-bit of logical EPR pair to non-local logical gates.

These Tiles generally contain sufficient physical qubits which can be used to execute

desired set of fault-tolerant quantum operations. In general one can define multi-

ple types of Tiles, each performing different functional role, to allow wider range of

building blocks in order to optimize resource consumption and the performance of

quantum application. An example of such optimization is described in section 4.12.1

and utilized in the study of chapter 7.

Even though, we use Tile to abstract trapped-ion hardware in this thesis, we

wish to point out that Tile can also encapsulate other technologies such as supercon-

ductors, quantum dots and neutral atoms to define corresponding application level

quantum architecture. Once technology specific Tiles are performance parametrized

based on device level implementation of the logical qubit, we need to specify mech-

anism of communication among Tiles to allow application level logical gates whose

operands are contained in different Tiles. Therefore Tiles are needed to be connected

by the communication channel applicable to given technology (e.g., ballistic shuttling

for trapped-ion, successive swapping for superconductors, optical interconnects for

photons). The communication component of the architecture can be modeled using

dedicated ‘Communication Tiles’ (see chapter 6,7) or adding ‘Port’ to the Tile at-

tributes which interface one Tile with another. Once adequate interface to connect

different Tiles is appropriately modeled, application level quantum architecture can

be completely defined for the chosen device technology to execute quantum algo-

rithm.

4.9 Quantum Application Circuit Generator

The Quantum Application Circuit Generator leverages the dependency graph for-

mulation used in Fault Tolerant Circuit Generator (see Figure 4.2). The quantum

algorithms are constructed from variety of complicated gates which needs to be de-

103

composed into universal set of gates whose fault-tolerant implementation is known.

The decomposition allows us to architect hardware using Tiles implementing these

familiar constituent fault-tolerant operations. For example quantum arithmetic cir-

cuit widely use Toffoli gates which need to be converted into the fault-tolerant circuit

of Figure 2.17. Similarly, another famous benchmark application Quantum Fourier

Transform uses small rotations about Z-axis of Bloch sphere RZpθq which is gener-

ally translated into sequence of T and single qubit Clifford gates Kliuchnikov et al.

(2013); Fowler and Hollenberg (2004).

In the dependency graph the nodes which model complicated gates are replaced by

the sub-dependency graph to include the equivalent fault-tolerant circuits required

for complete scheduling. This replacement is performed dynamically during the

high level scheduling as explained in Section 4.12. Using the dependency graph

abstraction, Quantum Application Circuit Generator models necessary structural

component of application level circuit to ensure correctness of scheduling.

4.10 Brief description of basic Architecture model in ADPA

Before describing various components of ADPA, we introduce base architecture an-

alyzed in the simulations. We assume large size ELUs called Segments connected

by optical switch. Each Segment consists of several QLA Tiles which map logical

qubits (data, ancilla or communication). The qubits across multiple Tiles in the

same Segment communicate through Ballistic Shuttling Channels while those across

Segments using Entanglement Channel. For multi-qubit transversal logical gate,

the operand logical qubits are brought into the same Tile wherein the gate can be

performed locally. Thus considering Toffoli as the bottleneck, we provide space to

accommodate at least three logical qubits. Each Segment contains dedicated ancilla

to perform error correction locally while cross-Segment qubit movement is arbitrated

by the dedicated Communication Tiles. Certain Segments contain additional magic

104

state Ancilla Tiles to perform non-Clifford Group gates (T of Toffoli). In this case

operands need to be first teleported into the designated Segment before the gate

is scheduled. For cross-Segment CNOT, the operands stay in the same segment as

the non-local gate can be implemented without operand teleportation J. Eisert and

Plenio (2000). However, in case of Toffoli gate, we require all operand qubits in the

same designated Segment which can lead to multiple cross-Segment teleportations.

Each Communication Tile has dedicated ancilla which perform error correction to

enhance the fidelity of non-local operation. Finally, unless there is extra space avail-

able, the Data logical qubit teleported to new Segment is swapped with the resident

Data logical qubit. Thus cross-Segment transfer includes two teleportations steps to

implement non-local swaps.

4.11 High Level Mapper

The High Level Mapper uses the Qubit Placement Algorithm described in section

4.5.1. It maps application circuit qubits (data logical qubits) to the Tiles in the

Segment so that the cost of long distance cross-Segment communication is minimized.

The High Level Mapper generates initial map of the logical data qubits which may

be later teleported to different ELUs for (i) non-local multi-qubit operation (Toffoli

gates) (ii) special Segments containing dedicated ancilla for magic-state preparation

(such as for T gate). Even though these logical qubits keep moving across the

Segments, the initial map plays critical role in reducing the impact of the long-

distance communication latency as well as number of teleportation across ELUs. For

example in Figure 4.7, the initial distribution of data logical qubit in the Segments

obtained from qubit placement algorithm, will bear significantly lower cross-Segment

movement than that of random distribution. Once initial map obtained, it is fed to

the High Level Scheduler.

105

Figure 4.7: The demonstration of the role of High Level Mapper. The qubits
of sample quantum algorithm circuit shown in (a) mapped onto a line (b) using
Algorithm in Table 4.1. These qubits are mapped to Tiles in Segments (c).

4.12 High Level Scheduler

The High Level Scheduler generates the correct sequence of logical gates in the ap-

plication circuit, uses ASAP heuristic to minimize the total execution time. The

Quantum Application Circuit Generator provides circuit description as dependency

graph, while the initial map of operand qubit is obtained from the High Level Mapper.

Using these inputs, High Level Scheduler implements Algorithm 3 for scheduling. For

this tool component, there are two important tasks. First the dynamic allocation

106

Figure 4.8: Optimality test of the Scheduler by plotting the execution time of 64-bit
Quantum Carry Look-Ahead Adder (QCLA) circuit against the available hardware
resources(qubits). The solid line shows resource constrained circuit execution time
while dotted line shows circuit execution time with no constraints on resources. The
resource axis is divided into fewer resource regime and sufficient resource regime.
The optimality of the Scheduler can be confirmed by noting the desired behavior
shown by the solid execution time curve in the two regimes.

of Segment resources to perform different types of logical operations. Second, track

availability of operands before which gate cannot be scheduled. Several resource

constraints can delay the scheduling which include:

1. Ancilla Tiles for error correction

2. Ancilla Tiles for magic state preparation

3. Communication Tiles for cross-Segment teleportation

4. Communication Tiles for cross-Segment CNOT

5. The congestion in the Ballistic Shuttling Channel for intra-Segment communi-

cation

107

Denote Tstart the time (in µs) at which gate can be originally scheduled without

considering above constraints, then depending upon the above mentioned constraint

Tstart is increased to include waiting time in which all operands are ready to ini-

tiate gate execution. The reusable resources such as Ancilla and Communication

Tiles are annotated with Tavail: the time at which these resources can be initial-

ized for their usage in next logical operation. In case of error correction and magic

state preparation, the Scheduler allocates subset of Ancilla Tiles which has avail-

able at the earliest. In other words, if time available for N Ancilla Tiles can be

ordered as: TA1
avail ¤ TA2

avail, T
A3
avail, . . . , T

Ak
avail, . . . , T

AN
avail, it will choose first k Ancilla

Tiles A1, A2, A3, . . . , Ak. In the same way, the Communication Tiles for cross-

Segment teleportation or CNOT are chosen. In this case it chooses two Commu-

nication Tiles, one from each Segment with available times TC1
avail and TC2

avail respec-

tively. Then, time before which these Tiles cannot generate mutual EPR pair will be

TC1,C2

avail � maxpTC1
avail, T

C2
availq. We describe mathematical expressions for the operand

available times Tavail for different types of operation. By convention D is used for

Data, A for Ancilla and C for Communication Tile. The expressions will use follow-

ing latency variables whose symbol and description is listed as follows:

• TX,YBShutt: Time taken to ballistically shuttle logical qubit contained in Tile X to

the space available in Tile Y

• T V,WEPR: Time taken to prepare EPR pairs Communication Tile V and W located

in different Segments

• TD,CLOCC : Time taken to perform local operation and classical communication to

implement non-local CNOT or teleportation. Since we ignore the cost of clas-

sical communication, this latency mainly includes time to perform transversal

CNOT between logical Data in D and logical e-bit contained in C followed by

the logical measurement on the e-bit

108

• TECEPR : Time taken to execute error correction in the Communication Tile

• TDEC : Time taken to execute error correction on the logical data qubit in D.

The same Segment CNOT between Data D1 and D2:

TD1
avail � TD2

avail � TD1,D2

BShutt (4.1)

The same Segment CNOT between Data D and Ancilla A:

TDavail � TAavail � TD,ABShutt (4.2)

The same Segment CNOT between Data logical qubits A1 and A2:

TDavail � TAavail � TA1,A2

BShutt (4.3)

The Cross-Segment CNOT between D1 of S1 using C1 with D2 of S2 using C2:

TD1
avail � maxpTC1,C2

avail , T
D1,C1

BShuttq � TC1,C2

EPR � TECEPR � TLOCC (4.4)

TD2
avail � maxpTC1,C2

avail , T
D2,C2

BShuttq � TC1,C2

EPR � TECEPR � TLOCC (4.5)

TC1
avail � TC1,C2

avail � TC1,C2

EPR � TECEPR � TD1,C1

BShutt � TLOCC (4.6)

TC2
avail � TC1

avail (4.7)

Cross-Segment teleportation swap between D1 from Segment S1 and D2 of Segment

S2. Assuming S1 selected C1, C3 and S2 selected C2 and C4 Communication Tiles:

TD1
avail � maxpTC1,C2

avail , T
D1,C1

BShuttq � TC1,C2

EPR � TECEPR � TLOCC � TC2,D2

BShutt (4.8)

109

TC1
avail � TC1,C2

avail � TC1,C2

EPR � TECEPR � TD1,C1

BShutt � TLOCC (4.9)

TC2
avail � TC1

avail (4.10)

TD2
avail � maxpTC3,C4

avail , T
D2,C4

BShuttq � TC3,C4

EPR � TECEPR � TLOCC � TC3,D1

BShutt (4.11)

TC4
avail � TC3,C4

avail � TC3,C4

EPR � TECEPR � TD2,C3

BShutt � TLOCC (4.12)

TC3
avail � TC4

avail (4.13)

Using these equations High Level Scheduler runs Algorithm 3 to order the execution

of gates by setting their start time: Tstart. The Scheduler also registers important

component of delays that increases Tstart for each gate which are listed as follows:

• Ancilla Delay (DANC): Delay due to the magic state preparation

• Shuttling Delay (DSHT): Delay due to the transportation of operand qubits of

the gate, through Ballistic Shuttling Channel inside the Segment

• Tel Delay (DTEL): Delay due to the EPR pair generation for communication

• Cross-Seg-Swap Delay (DSWP): Delay due to the cross-segment swapping

These delays are fed to Visualizer and Performance Metrics Decomposer which pro-

vide insight into the breakdown of execution time. The output of Scheduler is re-

ceived by the High Level Error Analyzer to computer logical failure probability of

entire quantum algorithm. We conclude this section by discussing how High Level

Scheduler deals with multiple layers of concatenation.

110

4.12.1 Dynamic Resource Allocation in Cross-Layer Scheduling

The Figure 4.9 shows High Level Scheduler dynamically allocating resources for

scheduling across multiple layers of concatenation. For quantum operation, denote

L1 as first layer and L2 as second layer of concatenation. The L2 Toffoli magic state

preparation requires two resource consuming steps (1) L1 Toffoli gates and (2) L2

|0yL error correction EC. Both these functions will be performed by group of L1

Ancilla Tiles. There are two-types of L1 Tiles. Seven Type-1 Tiles are assembled to

form one L2 Tiles which hold logical qubit (or L1 7-cat) of the Toffoli preparation

circuit. The Type-2 Tiles are dynamically allocated to perform multiple tasks. First,

28 Type-2 Tiles are used to generate seven L1 Toffoli magic states. Once consumed

by the L1 Toffolis, they can be reinitialized to perform L2 Error Correction for the

L2 Tiles.

It is also interesting that for an architecture of Figure 4.9, when macro model

is employed to abstract an L2 Tiles, the schedule for L1 operations spanning across

multiple L2 Tiles, can easily be translated into schedule at L2. In this example,

to generate schedule of an L1 gate (e.g., L1 CNOT or transversal Toffoli) whose

operands are stored in different L2 Tiles, we can use Shuttling Delay between the

corresponding L2 Tiles to adjust the Tstart of the L1 gate. By designing appropriate

resource architecture, we can avoid flattening an higher layer Tile to zoom into

lower layer Tiles operations. This way the High Level Scheduler runs efficiently by

performance-simulating the quantum circuit only at the top layer of concatenation.

4.12.2 The Correctness and the Optimality of the Scheduler

We would conclude this section by analyzing different ways in which the output of

(both High and Low Level) Scheduler can be tested for correctness and optimality.

111

Correctness

To verify that Scheduler generates correct sequence of gates, we can examine its

output which contains time instances at which each gates is scheduled for execution.

This output can be compared with the ordering and dependencies among gates spec-

ified in the original quantum circuit to validate the correctness. This fine-grained

verification approach is feasible for smaller circuits containing fewer gates so that

entire schedule can be fully read out compared with the circuit level gate connectiv-

ity. As circuit size grows larger, we rely on more holistic approach which utilizes the

output of Visualizer or analyzes the performance trend of the circuit as a function of

application size. The former method is explained in section 4.15 containing several

examples in which patterns of resource utilization is compared with the gate sequence

in the circuit to validate the Scheduler. In the latter method, we schedule application

circuit on a hardware containing sufficient resources and analyze the scaling of its

execution time with the application size. The matching between hardware mapped

execution time scaling with that predicted in the theory, allows us to certify the

correctness of the Scheduler. Using this method we verified our Scheduler for the

range of large size applications circuit by showing resource-performance scalability

of the quantum architecture in section 7.5.1.

Optimality

When computational resources are limited, the job of our Scheduler is reduced to

the general classical resource constrained scheduling problem known to be NP-hard.

This means that in principle we cannot guarantee if the Scheduler outputs optimal

sequence of gates within the resource constraints such that total execution time of

quantum application circuit is minimized. However, despite the fact that rigorously

proving optimality is tough task, we can test our Scheduler for ‘approximate’ op-

timality by comparing its performance in the selected resource-performance space

112

of our interest. In order to expose any sub-optimality, the Scheduler is tested for

highly resource intensive quantum application. Once appropriate benchmark is se-

lected, we analyze its execution by scheduling it on the hardware for varying resource

investment categorized into following regimes:

1. Fewer resource regime

2. Sufficient resource regime

In the fewer resource regime, we want Scheduler to maximally utilize resources to

lower the execution time. Ideally Scheduler should feature an x-fold (or more) reduc-

tion in execution time for x-fold increase in resources in the fewer resource regime.

In the sufficient resource regime, we want scheduler to minimize execution time to

the lowest achievable value (which is obtained considering no hardware constraints).

To test the optimality of our Scheduler we select 64-bit Quantum Carry Look-Ahead

Adder Draper et al. (2006) due to its resource consuming nature (see section 7.5.2

for details). Using this benchmark we obtained Figure 4.8 which shows benchmark

execution time as a function of available resources. It can be seen that in a fewer

resource regime, Scheduler achieves sufficiently higher (eight-fold) decrease in the

execution time compared to the increase (two-fold) in resources. On the other hand,

in case of higher resource regime, Scheduler reduces the execution time to its baseline

value (two execution time curves meet in this regime). Based on these observations,

we can conclude that Scheduler performs optimally over wide range of resource dis-

tribution patterns.

4.13 High Level Error Analyzer

The High Level Analyzer computes overall failure probability Pfail of the quantum

algorithm circuit. It manipulates two types of quantities precomputed by the Low

113

Level Error Analyzer: (1) The failure probability of each logical operation (op) de-

noted P op
Log and (2) The block physical failure probability BPFP denoted PQ

phy of

each logical qubit Q. As logical operation are processed for their scheduling, these

probabilities to systematically utilized to compute Pfail according to the specific

rules which are different from those defined for Low Level Error Analyzer. First, the

quantum error correction performed at layer i can either correct for error at layer

i � 1 or its converts layer i � 1 error into layer i logical error (if large number of

errors are accumulated at i � 1). If layer i is the highest layer of encoding, then

a logical error occurring at this layer is uncorrectable. Therefore we assume that

a single logical failure at the highest layer is enough to declare faulty execution of

entire quantum application circuit. In other words, the quantum algorithm will yield

correct result when none of the operations fails, thus simplifying the expression of

failure probability:

Pfail � 1�
¹
@op

j�nop¹
j�1

p1� P op
Logq (4.14)

where nop represents total repetition of an operation op. Both these variables had

been precomputed by the Low Level Error Analyzer. We define following categories

of operational failures:

• Shuttling Failure P SHT
Log : Failure due to the noisy Ballistic Shuttling Channel

• Teleportation Failure P TEL
Log : Failure due to the infidelity of an EPR pair for

communication

• Idle Failure P I
Log: Failure due to the fidelity degradation of qubit during no-

operation(no-op)

• Gate Failure PGATE
Log : Failure due to the noisy quantum gates

114

• Measurement Failure PM
Log: Failure due to the noisy measurement

• EC Failure PEC
Log : Failure due to the infrequent error correction

For Shuttling and Memory Failure, we assume exponential degradation of physical

fidelity F � expp�atq, where a (=1{Tcoh) is determined by the coherence time Tcoh

of the qubit, and t is the time between quantum gates over which qubit sits idle

(no-op) or travels through Ballistic Shuttling Channel. The failure probability of

physical qubit due to infidelity is: pf � 1�FNStep, where NStep represents the time

steps spent in Shuttling or sitting idle. Therefore we compute Shuttling and Memory

logical failure as follows:

P SHT
Log , P I

fail � 42p2
f (4.15)

Similarly, the PGATE
Log is computed from physical failure probability p due to the noise

in physical operation. This is given as:

PGATE
Log � Cp2, where C P t42, 84, 126u (4.16)

where C is 42 for single-, 84 for two- and 126 for three-operand transversal gates.

Next, in case of cross-Segment communication using EPR pairs, the fidelity is im-

proved by performing error correction on logical e-bits in corresponding Segments.

In this sense P Tel
Log and PEC

Log are computed in the same manner. For error correction

we need to know the amount of physical error PQ
phy accumulated in the logical qubit

(or logical e-bit) Q. Thus PEC
Log will be calculated as:

PEC
Log � 42rPQ

phys2 � 491rPQ
physp� 7512p2 (4.17)

The quantum error correction is a special case of measuring logical operator after

which logical qubit is projected into correct or incorrect logical state depending upon

115

the value of PQ
phy. Similarly, the logical measurement of Q will fail to produce correct

outcome depending on PQ
phy. Thus, for PM

Log we define:

PM
Log � 16rPQ

phys2 � 83rPQ
physp� 796p2 (4.18)

The operator measurement for magic state preparation (for T gate) using 7-cat state,

we define PMagic
Log as:

PMagic
Log � 42rPQ

phys2 � 392rPQ
physp� 6083p2 (4.19)

The pre-factor C used in the eq. 4.15,4.16,4.17,4.18,4.19 was obtained from fault

counter of Low Level Error Analyzer. We can generalize these equation to com-

pute failure probability at layer i from layer i � 1 failure probability. Therefore,

by recursively computing performance, we can efficiently track Pfail for any layer of

concatenation. Finally, we describe how PQ
phy is updated by the High Level Error

Analyzer. PQ
phy increases monotonically as gates operate on Q as noise accumulate

due to faulty gates. However, once error correction is performed, we calculate PEC
Log

using eq.4.17 and reset PQ
phy to default value 11. The Table 4.2 shows the effect of

different operations on PQ
phy. These values are also computed by the Fault Counter.

The output of High Level Error Analyzer is also fed to the Performance Metrics

Decomposer to obtain constituents of Pfail.

4.14 Performance Metrics Decomposer

The Performance Metrics Decomposer provides detailed breakdown of algorithm ex-

ecution time and failure probability. First, the components of Texec by keeping track

of the different types of latency overhead comprising the critical path of the quantum

circuit execution. Our iterative scheduler selects a gate for execution during each

116

iteration and updates the critical path. When a gate is selected for execution, the

operand qubits should be available for computation otherwise it will be delayed. If

we let Tstart be the time at which the gate was executable but operands were available

at T 1
start where T 1

start ¥ Tstart, then the time at which the gate execution is complete

is given by Tfinish � T 1
start � Texec. The gate execution selected in scheduling itera-

tion i will update the critical path if Tfinish ¡ T i�1
TotalExec where T i�1

TotalExec is the total

execution time (the length of critical path) computed in iteration i� 1.

When the gate lies on the critical path, the Scheduler computes ∆T � Tfinish �
T i�1
TotalExec and ∆D � T 1

start � Tstart which can be broken down as ∆D � DANC �
DSHT �DTEL�DSWP . To define the components of critical path in iteration i�1 we

split T i�1
TotalExec into its components as: T i�1

TotalExec � T i�1
ANC � T i�1

SHT � T i�1
TEL � T i�1

SWP �
T i�1
GATE. For iteration i, these components are updated as follows:

• Ancilla Preparation Overhead:

T iANC � T i�1
ANC � DANC

∆D�Texec �∆T

• Shuttling Overhead:

T iSHT � T i�1
SHT � DSHT

∆D�Texec �∆T

• Teleportation Overhead:

T iTEL � T i�1
TEL � DTEL

∆D�Texec �∆T

• Segment Swap Overhead:

T iSWP � T i�1
SWP � DSWP

∆D�Texec �∆T

• Gate Overhead:

T iGATE � T i�1
GATE � Texec

∆D�Texec �∆T

117

In case of the critical path, we also update the total execution time T iTotalExec �
Tfinish. An example breakdown of execution time as shown in Figure 4.10, where

magic state preparation for Toffoli gates and cross-segment swapping delay the exe-

cution of gates in turn and comprise the bulk of the critical path.

The decomposition of the failure probability Pfail is relatively easier. The eq.4.14

can be broken down into sub-equations each correspond to the noise source tracked

by High Level Error Analyzer during the scheduling of logical operations. For any

operation type op, we can obtain P op
fail � 1 �±i�nop

i�1 p1 � P op
Logq, where op can be

Shuttling, Idle, Teleportation or Gate, Measurement and Error Correction and nop

and P op
Log are the total operation count and failure probability for op, respectively.

4.15 Visualizer

Our Visualizer provides pictorial representation of the scheduled quantum circuit. In

contrast to the critical path analysis of the quantum algorithm execution, it displays

footprint of entire schedule. Therefore, Visualizer augments the utility of Perfor-

mance Metrics Decomposer in three ways. First, it can help us in verifying the

correctness of scheduling. Second, it can track the distribution of computational

load across different parts of the quantum system. Third, it can evaluate utilization

of resources for different types of operations.

Our Visualizer portrays latency incurred in scheduling quantum circuits by plot-

ting two types of lines in Resource-Time plane. The slanted line represent delay in

scheduling cross-Segment CNOT. The strictly horizontal lines designate delays in

scheduling gates inside the Segment, such as gates comprising magic-state prepa-

ration and fault-tolerant implementation of non-Clifford gates. The length of line

represents latency associated with the type of gate. To demonstrate the efficacy of

this tool component, we present three 64-bit circuit examples for visualization: the

Approximate Quantum Fourier Transform (AQFT) Fowler and Hollenberg (2004),

118

the CDKM Quantum Ripple Carry Adder (QRCA) Cuccaro et al. (2004) and the

Quantum Carry Look-Ahead Adder Draper et al. (2006), their visual execution is

shown in Figure 4.11,4.12,4.13 respectively, encoded with two layers of concatena-

tion. In these figures, the horizontal axis represent time while vertical axis shows the

numeric Segment ID for visualization plots. Each Segment contains four Data Tiles

in case of AQFT and three in case of adders. Using these simulation parameters,

interesting insights into the execution of these circuits can be obtained.

We find that the computational load in AQFT successively shifts from one Seg-

ment to the neighboring Segment, following the staircase connectivity pattern found

in the circuit (comparing (a) and (b) in Figure 4.11). However, the lack of slanted

lines show the absence of cross-Segment delays, indicating that AQFT execution

time is dominated by the magic-state preparation. In case of QRCA, the load of

computation trends into V-shape, imitating the connectivity structure of CNOT and

Toffoli gates in the circuit (compare (a) and (b) in Figure 4.12). However, unlike

AQFT, the presence of slanted lines in the plot indicates cross-Segment CNOT gates

contributing to the overall execution time. Note that AQFT and QRCA plots look

sparse which hints at the underutilization of Segment resources due to the serial

nature of these circuits. In contrast, QCLA is constructed from several concurrently

executable gates which keep several qubits busy at any given time. Thus, Figure 4.13

shows several Segments concurrently executing Toffoli gates represented by horizon-

tal lines in the visualization. It is interesting to note that variation in the magic

state preparation workload distribution across Segments, strikes sufficient matching

with the concurrency of Toffoli gates in the circuit. The long vertical lines at the far

end of visualization plot shows cross-Segment CNOT scheduled at the end of circuit.

Based on these plots we can conclude that QCLA is more resource intensive circuit

that AQFT and QRCA.

This example shows that our Visualizer provides added insights into the events

119

occurring while circuit is being scheduled. Most importantly, it sheds light on the

workload distribution and resource utilization patterns. In chapter 7, we show that

Visualizer can help us in optimizing the design of large scale quantum computer

architecture for Shor’s algorithm. Both Visualizer and the Performance Metric De-

composer are unique feature of our tool and vital contribution of thesis.

4.16 Summary

In this chapter we presented a case for the performance simulation software tool to

explore design space for quantum systems. We highlighted basic components of such

tool and surveyed prior work in this area and analyzed their strengths and limitations.

A new design and performance estimation tool was presented which fulfilled the

deficiencies in previous tools. These included the flexibility to change the parameters

defining quantum hardware and architecture, the detailed breakdown of performance

metrics and the ability to visualize resource utilization. The entire design flow was

provided along with comprehensive details of each component. The functionality of

various part of the tool was illustrated using underlying algorithm pseudocode or

example demonstration of the technique or both. The tool was developed to pack

very large number of qubits on the scalable quantum hardware (e.g., MUSIQC) in

hierarchical manner. Using modularity, the tool also supported execution of circuit

encoded with multiple layers of Steane code and optimized resource allocation across

encoding layers. The efficiency of the tool came from explicit scheduling at the

highest layer using per-computed schedules of immediate lower layer gates. With

all these unique attributes, the tool lies at the heart of the thesis which describes

flexible framework to study quantum computer architectures.

It should be noted that the tool presented in the chapter is the end product of an

effort which went though different phases of development. At the end of each phase,

we conducted a study using the hitherto version of the tool. These studies comprise

120

next three chapters of the thesis, each revisits parts of the tool relevant to the topic

at hand.

121

Input: A fault-tolerant operation acting on logical qubit Q and containing
sequence of physical gates G � g1, g2, g3, . . . , gm and n possible fault locations.
Output: Logical Failure Probability P fail

L of logical qubit Q
initialization Precompute Stabilizers set tSgiui�mi�1 @gi P G
U ÐÝ ttwo-qubit uncorrectible errors defined for Qu
LogicalErrorsCount = 0
for i � 1 : n do

for j � 1 : n do
if i � j then

E ÐÝ tpPi, Pjqu P P tX, Y, Zu
� E is the set of all two-error events defined by combinations of

Pauli errors pair (Pi, Pj) tested for faulty location for i and j
for e P E do

Error = True
while e continues to propagate do

Find gate ga for location i and gb for location j
if ep1q P tSgau ^ ep2q P tSgbu ^ e caught in cat-state
verification then

Error = False
Discontinue e propagation

end

else
Propagate e(1) through ga
Propagate e(2) through gb
Update new faulty locations for i and j
Update ga and gb to next gates in the sequence

end

end

if e P U ^ Error then
LogicalErrorsCount += 1

end

end

end

end

end
Algorithm 2: Pseudocode of the fault counter

122

Input: Dependency graph GpV,Eq with vertices V for gates in the circuit and
directed edges E for dependencies among gates
Output: List containing pairs pvi, T vistartq, vi P V for start time of each gate
initialization @i P V Setpvi, 0q
Define for a vertex x, T xfinish � T xstart � T xexec
while V is not empty do

S ÐÝ Independent vertices from V
for gate P S do

if gate P tnon- Clifford Groupu then
Obtain equivalent sub-dependency graph W px, dq for gate
Substitute W for gate in G
V ÐÝ V � gate
S 1 ÐÝ Independent vertices from W
S � S 1 Y S
opÐÝ gate operands

end

if Number of(op) = 3 then
� It is a transversal Toffoli gate

if op in different Segments then
Teleport to bring all op in same Segments
Update gate T gatestart � T opavail according to eq. 4.8 4.9,
4.10,4.11,4.12,4.13

end
Shuttle logical qubits of op in the same Tile to execute Toffoli
Update T gatestart � T opavail according to eq.4.3, 4.1 and 4.2

end

if Number of(op) = 2 then
� Its a CNOT gate

if all op in different Segments then
Create EPR pairs to implement non-local CNOT
T gatestart � T opavail according to eq. 4.4, 4.5, 4.6, 4.7

end

else
Shuttle logical qubit of op in the same Tile to execute CNOT
Update T gatestart � T opavail according to eq.4.3, 4.1 and 4.2

end

end

if Error Correction needed for on or more op then
Shuttle error-correction Ancilla Tiles into the Tile containing op
Update T gatestart � T opavail according to eq.4.2
T gatestart� � TDEC

end

Update T gatefinish � T gatestart � T gateexec

end

for w P tchildren of gateu do
Twstart � maxpTwstart, T gatefinishq,

end

end
Algorithm 3: Pseudocode High Level Scheduler

123

Figure 4.9: An example demonstration of cross-layer resource optimization during
High Level scheduling using L2 Toffoli magic state preparation circuit. A block of
Type-2 L1 Tiles used to perform seven L1 Toffoli gates can be reallocated to perform
L2 error correction

Table 4.2: Updating Block Physical Failure Probability

Logical Operation Addition to PQ
phy Update PQ

phy

Single-qubit Clifford 2p NA
Multi-qubit transversal 2p NA

T gate 20p NA
Error Correction NA 11p

124

Figure 4.10: An example shows tracking of latency overheads comprising critical
path of the circuit.

125

Figure 4.11: An example visualizer demo of 64-bit Approximate Quantum Fourier
Transform circuit scheduled with 4 Data, 4 Ancilla and 1 Communication Tiles per
Segment. A sample circuit is shown in (a) while visualization is presented in (b).
The staircase structural connectivity of the macro blocks in the circuit, perfectly
matches with the stairs in visualization. The internal circuitry of the block is shown
in (c)

126

Figure 4.12: An example visualizer demo of 64-bit Quantum Ripple Carry Adder
circuit scheduled with 3 Data, 4 Ancilla and 4 Communication Tiles per Segment. A
sample circuit is shown in (a) while visualization is presented in (b). The “V” shape
connectivity of the CNOT and Toffoli gates in the circuit maps similar pattern in
the visualization shown in (b)

127

Figure 4.13: An example visualizer demo of 64-bit Quantum Carry Look-Ahead
Adder circuit scheduled with 3 Data, 4 Ancilla and 4 Communication Tiles per
Segment. A sample circuit is shown in (a) while visualization is presented in (b).
Large number of parallel operations in the circuit translate into denser map in the
visualization which shows busy Segment resources

128

5

Performance Simulation based on Hardware
Resources Constraints

In chapter 3 it was shown that efforts to build quantum computers using ion-traps

have demonstrated all elementary qubit operations necessary for scalable implemen-

tation. Modular architectures have been proposed to construct modest size quantum

computers with up to 104 � 106 qubits using technologies that are available today.

Concrete scheduling procedure to execute a given quantum algorithm on such a

hardware is a significant task, but existing quantum CAD tools generally do not

account for the underlying connectivity of the qubits or the limitation on the hard-

ware resources available for the scheduling. We present a scheduler and performance

simulator that fully accounts for these resource constraints, capable of estimating the

execution time and error performances of executing a quantum circuit on the hard-

ware. We outline the construction of tool components, and describe the process of

mapping the qubits to ions and scheduling the physical gates in the MUSIQC based

architecture. Using this tool, we quantify the trade-off between hardware resource

constraints and performance of the computer and show that at an expense of x fold

increase in latency, a minimum of 1.6x resource reduction is possible for executing a

129

three-qubit Bernstein-Vazirani algorithm encoded using Steane code.

5.1 Motivation of Study

Realization of scalable quantum computing device has foundational importance of

demonstrating quantum speedup in actual problem solving, as well as several known

practical applications. In contrast to the rapid advances in theory, the frontier of

experimental effort of building a quantum computer of significant size still faces

a wide range of technological challenges. The experimental demonstrations so far

have been limited to only small sized computers Marx et al. (2000); Vandersypen

et al. (2001); Negrevergne et al. (2006); Hanneke et al. (2009); Monz et al. (2011);

Mariantoni et al. (2011). Architectures for constructing large-scale quantum proces-

sors have been considered Monroe et al. (2014); Galiautdinov et al. (2012), and one

can readily estimate the performance of these systems by simulating quantum circuit

on the hardware. Existing tools that were developed for this purpose Svore et al.

(2004, 2006a); Balensiefer et al. (2005a); Whitney et al. (2007); Balensiefer et al.

(2005b) make simplifying assumptions about the physical hardware that is not well

justified in practical settings: examples of such assumptions include (1) arbitrarily

large number of qubits available in the quantum hardware, (2) unlimited classical

control resources that support many qubit manipulation operations in parallel, and

(3) arbitrary connectedness of the qubits allowing two-qubit gate between any qubits

in the quantum hardware regardless of their relative location. One of the important

considerations in designing performance simulation tool is to handle resource inten-

sive fault-tolerance requirements of quantum circuits Nielsen and Chuang (2000).

Since quantum systems are much more sensitive to errors compared to their classical

counterparts, fault-tolerant protocols must be introduced to increase the probability

of correct circuit execution by performing computation on qubits encoded in quan-

tum error correcting codes. A quantum circuit is fault-tolerant if the failure rate of

130

the encoded circuit execution reduces to Opp2q, where p is the failure rate of each

physical gate. Although a fault-tolerant quantum circuit is successfully constructed,

successful fault-tolerant execution requires low enough error probabilities in the phys-

ical operations and memory, along with the availability of fresh supply of qubits and

the hardware resources needed to execute the frequent error correction procedures

in parallel to efficiently overcome the memory errors Preskill (1998b).

In this chapter we quantitatively analyze the requirements on the fault-tolerant

operation of a quantum circuit and the necessary hardware resources given accept-

able memory error rates. We shall base our analysis on performance simulation of a

MUSIQC as the underlying quantum hardware. Using our tool, we show that there

is a manifold in which reliable quantum computation is possible respecting the con-

straints of the hardware, such as the number of qubits, their interconnectivity and

number of concurrent gate operations. Furthermore we show that we can trade one

type of hardware constraint variable for another in achieving a similar performance.

This trade-off opens up useful design space for the quantum computer architects

to focus their effort in pursuit of meaningful design parameters. Finally, based on

simulation results, we will show that there is a significant reduction in resources at

the cost of modest degradation in execution time as long as one can find a schedule

under hardware constraints in which qubit idle time is held within reasonable limits.

In section 5.2, we briefly describe the MUSIQC architecture, important terminol-

ogy and definitions used throughout the chapter. Section 5.3 describes the overview

of the tool design flow, the resource bound mapping and scheduling strategies, and

methods to quantify fault tolerance for a given architecture. Simulation results and

their analysis comprise section 5.4. Further discussions on the validity, scalability

and limitations of our tool is detailed in section 5.5, and section 5.6 contains the

summary.

131

Figure 5.1: Schematic of a modular ion trap quantum computer architecture used
for performance analysis in our simulation

5.2 Hardware, Architecture Model and Definitions

While all physical models of quantum computer hardware will be subject to a range

of constraints, a specific physical hardware platform has to be defined for concrete

analysis. In our study, we analyze a modular universal scalable ion-trap MUSIQC as

the underlying quantum hardware. Compared to other idealized architecturesMetodi

et al. (2005); Thaker et al. (2006); Isailovic et al. (2008), MUSIQC utilizes a sim-

ple 1-D chain of ions as a unit of quantum register within which multi-qubit gates

are accomplished using transverse vibrational mode of the chain as the inter-qubit

interaction Zhu et al. (2006). Such chains form ELUs in the scalable architecture.

Multiple ELUs implemented on the same ion trap chip can be connected through

physical shuttling of ions between them Kielpinski et al. (2002), while a two-qubit

gate between ELUs that are physically separated can be realized by first estab-

lishing an entangled qubit pair between designated “entangling ions” on the ELUs

using a photonic channel Duan et al. (2004), and then using the entangled pair as

a resource to perform the desired gate via quantum teleportation Gottesman and

Chuang (1999). The ELUs are connected to each other through a reconfigurable

optical crossconnect switch, where the entangling ions from any pair of ELUs can

132

be connected within the system. This makes the cost of communication between

ELUs for non-local (inter-ELU) gate independent of distance, a unique feature in

MUSIQC architecture that provides significant advantages in implementing useful

quantum circuits Monroe et al. (2014).

A simplified schematic of architecture is shown in Figure 5.1. The ions within each

ELU are used as three different types of qubits: data, ancilla and entangling ions.

Data ions correspond to data qubits which store main quantum information during

algorithm execution. The ancilla ions are for ancilla qubits that carry temporary

quantum information during various quantum error correction procedures, such as

(error) syndrome detection, error correction, and preparation and measurements of

special quantum states used in fault-tolerant quantum gate procedures Nielsen and

Chuang (2000). Entangling ions are used for generating entangled qubit pairs (e-

qbts) between ELUs used to communicate qubits or gates Maunz et al. (2009). The

established entanglement is shown as black arrowed arcs. The process of generating

entanglement between entangling ions is probabilistic, and therefore in our simulation

we use average time for entanglement generation. The gate operation between ions

on different ELUs (inter-ELU gates) is carried out using either quantum teleportation

of data qubits from one ELU to the other, or using distant gate method based on

local operations and classical communications (LOCC) J. Eisert and Plenio (2000).

The quantum error correction is performed by first measuring all the stabiliz-

ers of the code (corresponding to the parity check operations in classical linear

codes)Nielsen and Chuang (2000). The measurement result of the stabilizers provide

the error syndrome, which dictates the error correction procedure that should be ap-

plied to the encoded qubit. A fault-tolerant procedure for measuring the stabilizers

is well established using ancilla qubits, and can be performed in parallel if sufficient

resources are available. Various strategies for performing all stabilizer measurements

under resource constraints will be the main analysis of this work.

133

The following terminology and acronyms will be used in the rest of the chapter:

• AvEPR: Number of available e-qbts on each ELU

• Tentgmnt: Average time to establish an entangled pair between two ELUs.

• NAnc: Number of available ancilla ions on each ELU

• NP : Maximum number of permitted concurrent gate operations in the system,

which depends on the amount of classical control hardware available.

• Psuccess: Probability that computation yields correct outcome after the execu-

tion of a quantum circuit. 1-Psuccess is also referred to as the error or failure

probability.

• Texec: Total time spent in executing the circuit

Variables such as AvEPR, Tentgmnt, NAnc, NP describe hardware resource con-

straints whereas Psuccess and Texec are performance metrics. We do not consider a

constraint on data ions: we have to assume the quantum hardware has sufficient

data qubits to handle the problem size under consideration, and there is not much

opportunity for reuse of the data qubits during computation.

5.3 Tool Components and Overall Design Flow

The version of tool used in this study is shown in Figure 5.2(a). It has three main

parts: Physical Circuit Graph (PCG) builder, Mapper and Scheduler, with Error

Analyzer as an optional component. These components belong to TDPA in the

context of complete toolbox, shown in Figure 5.2(b). The quantum circuit and

architecture resource specifications are provided by the user to the PCG builder which

generates the PCG. This graph is constructed by translating qubit connectivity in

134

Figure 5.2: (a) The components and their interconnection in tool design flow.
PCG: Physical Circuit Graph (b) These components map to the shaded constituent
blocks of TDPA in the context of complete toolbox

the given quantum circuit to ion connectivity in the hardware with the help of a pre-

scheduler. PCG is fed to the Mapper which performs Partitioning and Placement to

map circuit qubits to ions in ELU. Once Mapper has produced the layout, Scheduler

runs to obtain total execution time and to optionally record qubit idle times that may

be used by error analyzer. Both Mapper and Scheduler are designed to operate under

hardware resource constraints. Error Analyzer, in this study, takes the scheduled

circuit from the Scheduler as input, uses Monte-Carlo simulation to simulate gate

error in the circuit, and calculates overall failure probability of the circuit. In this

chapter we assume a fixed value for the gate errors, and study the impact of memory

errors on fault-tolerant operation of a quantum circuit.

Limited resources play key role in automated mapping and scheduling perfor-

mance of quantum circuit on the hardware. Our algorithms keep track of each re-

source usage by labeling them ‘Occupied’ or ‘Available’. Resources are dynamically

allocated and their allotment is prioritized such that overall latency of the quantum

135

circuit execution is minimized.

5.3.1 Mapping

Mapper allocates the qubits in the quantum circuit on to physical ions in the hard-

ware. For data qubits, mapping is static, meaning that ions representing data qubit

will not hold ancilla or e-qbts at any time. For ancilla and e-qbts (both of these

are ‘reusable qubits’), each ELU keeps track of occupied and available qubits. In

this sense allocation of ions for these qubits is dynamic and handled in the sched-

uler. Hence finding static map for all data qubits is the main job of Mapper, which

has two parts: Partitioner and Placer. Partitioner places each data qubit into a

specific ELU, and Placer identifies a physical ion for each data qubit within the de-

signed ELU. Mapper has to first construct qubit connectivity graph from quantum

circuit to facilitate application of our algorithms. It contains vertices corresponding

to qubits in the circuit and edges model CNOT gate between the qubits. The weight

of an edge between two vertices is determined by the number of CNOTs between

the associated qubits. The selection of our algorithms is based on simplicity and

efficiency to match the requirements of scheduling quantum circuits. Next we briefly

describe our partitioning and placement algorithms.

The Partitioning algorithm distributes qubits among ELUs such that the num-

ber of inter-ELU gates resulting from the partitioning is minimized. To solve this

partitioning problem, we implemented a simple greedy algorithm to exploit common

structures in quantum circuits such as quantum error correction. We note that such

repetitive structures produce qubit connectivity graphs (QCGs) with two important

properties: that the edge weights (total number of two-qubit gates involving a qubit

as the vertex) are often bounded by a small integer, and the variance of edge weights

of the vertices are also generally small. Based on these observations, our partitioning

algorithm prioritizes the assignment of qubits to the ELUs in the ascending order of

136

their total edge weight. In each iteration, a qubit is selected from the priority list

along with the set of its interacting qubits. An ELU which can accommodate most

of these qubits is selected and assigned to the set. The priority list is then updated

with leftover qubits to be processed in the subsequent iteration, until every qubit is

assigned to an ELU.

Placement algorithm arranges the qubits within an ELU by maximizing locality

among frequently interacting qubits. It finds an approximate solution to the Optimal

Linear arrangement Problem, by using a graph-theory-based algorithm discussed in

Ref. Juvan and Mohar (1992). First, we translate the QCG as an Adjacency matrix,

where each row and column represents the qubits in the quantum circuit, and each

element corresponds to the number of two-qubit operations between the row and the

column qubits. Then, the Laplacian of this matrix is obtained and its eigenvalues

and eigenvectors are computed. The resulting eigenvalues are non-negative. The

eigenvector corresponding to the second smallest eigenvalue is chosen to determine

the location of the qubits within each ELU. For more details on the mapping problem

please refer to section 4.5.

5.3.2 Scheduling

Scheduler takes mapped hardware and generates the execution order of gates in the

given quantum circuit. The main challenge of scheduling lies in dynamic allocation of

reusable qubits and hardware-imposed constraints on concurrent execution of gates.

Our Scheduler in Algorithm 4 works in an iterative way: first, a Dependency Graph

is generated at the quantum circuit level, and a set of gates is selected for execution

in each iteration based on the dependencies. A subset of these gates may be further

selected due to limited e-qbts and ancilla used in inter-ELU gates and quantum error

correction, respectively. The selected gates are then dispatched and their respective

order of execution is determined by constraints on NP . This is similar to classi-

137

Input: Dependency graph GpV,Eq with vertices V for gates in the circuit and
directed edges E for dependency between gates
Output: List containing pairs pvi, T vistartq, vi P V for start time of each gate
initialization @i P V Setpvi, 0q.
Define for a vertex x, T xfinish � T xstart � T xexec
while V is not empty do

S ÐÝ Independent vertices from V
if S doesnot satisfy constraints on AvEPR then

S1 ÐÝ EPR independent nodes in S
@i P S � S1, T

i
start � minjPS1 T

j
finish

end

if S1 doesnot satisfy constraints on NAnc then
S2 ÐÝ NAnc independent nodes in S1

@i P S1 � S2, T
i
start � minjPS2 T

j
finish

end
Dispatch left over nodes in S2 for execution and update their Tstart as:
@i P S2, T

i
start � min1¤j¤NP L

j
avail

� Ljavail is the time when jth slot of Parallel Operation Buffer becomes
available
Update V ÐÝ V � S2

for gate P S2 do
T gatefinish � T gatestart � T gateexec

for w P tchildren of gateu do
Twstart � maxpT gatefinish, T

w
startq

end

end

end
Algorithm 4: Scheduling Algorithm

cal instruction processing wherein processor maintains reorder buffer and incoming

instructions are queued until their operands are available. Here, the operands cor-

respond to qubits and number of slots in reorder buffer is NP . For more details on

the scheduling problem, please refer to the section4.6.

The dynamic resource allocator within the scheduler is responsible for deadlock-

free scheduling through careful management of resource assignment and release. The

most frequent tasks encountered in scheduling are fault tolerant protocols largely

containing quantum error correction. It often requires a minimum number nmin of

ancilla qubits to schedule main subtask of syndrome calculation, which is composed

138

of three steps. In the first step, it needs fresh ancilla prepared in an appropriate state

(e.g., a maximally entangled state of several qubits), which amounts to resource as-

signment. In the second step, ancilla interacts with data to obtain the signature of

the error. In the last step, ancilla are decoded and measured to extract final error

information. Once measurements are performed, ancilla qubits are released and can

be reused for another syndrome calculations or other tasks. The syndrome calcula-

tions subtasks can be scheduled in parallel if sufficient ancilla qubits are available,

or (partially) in series otherwise. When fully parallel scheduling is infeasible due

to limited availability of ancilla qubits and the resource allocator distributes ancilla

such that each one is assigned less than nmin ancilla, the schedule can potentially

encounter deadlock because none of the subtasks can be completed and no allocated

ancilla can be freed for other (sub)tasks. Therefore, a smaller quantum computer

can suffer from scheduling deadlock due to inefficient resource allocation.

To address this issue, our resource allocator follows ‘all or nothing’ strategy, where

each subtask is scheduled only when enough ancilla are available for its completion.

In addition, scheduling of operations within each subtask is prioritized to facilitate

quick ancilla release. This is achieved by assigning highest priority to the measure-

ment since they free qubits to be used by other tasks. The same strategy is applied

to e-qbt resource management, except that in case of AvEPR constraint, the associ-

ated tasks are operations local to ELU for each non-local CNOT J. Eisert and Plenio

(2000) and can be scheduled with only one e-qbt per ELU. On the contrary, the

NP constraint does not create any deadlock since unlike quantum resources which

are freed only after measurement of qubits, the classical resource NP is can be re-

leased and reused once the current operation (whether it is a gate, preparation or

measurement) is completed.

139

5.3.3 Quantifying Architecture Support for Fault-tolerance

Reliable scheduling of gates in quantum circuit under resource constraints is an

important question. The quantum hardware constraints may not support successful

scheduling of fault-tolerant computation where maximum parallelism and sufficient

supply of ancilla qubits are required. We argue that by imposing an upper limit

on qubit idle time to ensure acceptable failure probability for the quantum memory,

fault-tolerance can usually be achieved.

When mapped to realistic hardware, typical quantum circuits incur both gate and

memory errors. The level of noise in a gate execution determines the failure rate of

the gate. Quantum threshold theorem says that fault tolerant quantum computation

is possible if the error probability p of each gate is below certain threshold value pth

(p pth). In this analysis, we choose a fixed gate error rate of p � 2� 10�5 which is

below the fault tolerant threshold, yet potentially achievable in the ion-trap system.

The memory error rate Rmem may be translated into an error probability p1 per unit

time T (e.g., the gate time) by multiplying the rate by the time interval, which is a

valid approximation when p1 � RmemT ! 1. For trapped ions, the decoherence time

of the memory can be as long as 1{Rmem ¥ 1 � 1, 000 sec. We choose a value of

Tdec � 5000µsec so that p1 � RmemTdec � 5 � 10�5 in our simulations, and employ

a simple error model where a memory error is added whenever the qubit idle time

exceeds Tdec.

5.4 Simulation of Bernstein-Vazirani Algorithm

In this section we shall describe our main simulation results. The circuit chosen for

simulation is Bernstein-Vazirani algorithm Bernstein and Vazirani (1993b) shown in

Figure5.3. There are four logical qubits, two in each ELU. All qubits are encoded

with Steane [[7,1,3]] quantum error correcting code Steane (1996), so that all gate

140

Figure 5.3: (Left) The quantum circuit that was simulated. There are two ELUs
and the dotted box contains inter-ELU CNOT gate. (Right) Typical execution times
of the gate and measurement operations used in the simulation.

Figure 5.4: Simulated execution time as a function of available ancilla qubits and
parallel operations. Upper (lower) curve is for AvEPR = 1 (7). Region enclosed in
the loop is where variation in execution time is minimum (Tentgmnt � 500µsec).

141

Figure 5.5: Success probability variation with ancilla and parallel ops. Left plot
is for AvEPR = 1 and right one for AvEPR = 7. Tentgmnt is taken 500µs. The
deoherence Time Tdec = 5000µs. Curve inside yellow the boundary within which
Psuccess � 1

Figure 5.6: Texec and Psuccess variation with Number of EPRs (AvEPR) and Avg.
Gen Time (Tentgmnt). Texec is shown in left subplot and Psuccess in right subplot on
the top. Tdec is 5000µs.There is no constraint on number of parallel operations and
available ancilla and hence NAnc and NP are set to their maximum values, 60 and
60 respectively. In left subplot, the red curve inside the (blue) boundary is a feasible
region for computation since Psuccess is unity.

142

operations in the circuit are transversal, i.e., they can be performed as a bit-wise

gate operation to each constituent qubits within the code block. Transversal gates

are automatically fault-tolerant, as the error in one component of the code block

do not propagate to other components. A logical inter-ELU CNOT gate shown in

(red) dotted rectangle will therefore correspond to seven bit-wise inter-ELU physical

CNOT gates. We also assume that error correction is performed after each logical

gate and necessary ancilla will always be fetched from the same ELU. Gate and

measurement times are taken from Metodi et al. (2005), and shown on the right in

Figure 5.3. For error analysis of the circuit, we assume that if qubits sits idle for time

greater than Tdec, it will acquire Y (both bit and phase flip) error. We keep track of

errors in each physical and logical qubits and if any logical qubit has uncorrectable

error after all gates have been scheduled, this is counted as failure of entire circuit.

Thus Psuccess is 1 if all errors were perfectly corrected and 0 otherwise.

5.4.1 Simulation Results

Texec as a function of NAnc and NP

In this simulation we are interested in observing the effect of NAnc and NP con-

straint on the execution time of circuit. Intuitively execution time should increase

by tightening the constraints as we have fewer resources to exploit parallelism in

the circuit. As expected, Figure 5.4 shows that Texec increases as NP and NAnc

decrease. We note that there is gentle increase in Texec starting from the regime of

least constraints (NP = 60, NAnc = 60) as NP and NAnc are reduced, until at a

certain point a sharp increase is observed.

In the regime of gentle increase, we can find a surface which is ‘almost flat’,

shown enclosed in the (black) boundary in Figure 5.4. Execution time remains

almost constant at this surface and therefore we can readily trade number of available

ancilla with parallel operations. For example there are two points which have roughly

143

same performance: Texec = 5605us for NP = 50, NAnc = 30, which is close to

Texec = 5506us for NP = 16, NAnc = 60. On the other hand when constraint

variables approach their minimum permissible values, Texec shows rapid increase.

Figure 5.4 shows two surfaces, one for AvEPR = 1 (upper surface) and another for

AvEPR = 7 (lower surface). The difference in execution time for these two cases is

more prominent when NPand NAnc are sufficiently large, because execution time

depends more strongly on AvEPR. This is when Tentgmnt begin contributing to Texec

depending upon chosen AvEPR value. As NP and NAnc are reduced, the impact

of AvEPR diminishes, as limitations due to NP and NAnc start dominating the

execution time Texec.

Psuccess as a function of NAnc and NP

This simulation describes trends in Psuccess when NAnc and NP change for a given

AvEPR value. Intuitively, as NP and NAnc decrease, the qubits tend to sit idle

waiting for the queues to clear due to limited resources, and eventually experiences

a memory error. When large number of qubits simultaneously acquire errors, error

correction procedure would fail and fault-tolerant protocols will not work.

Figure 5.5 shows that for decoherence time (Tdec) of 5000µsec, errors resulting

from most input combinations of constraint variables were corrected, shown by the

red portion enclosed in (yellow) boundary. There is a small (blue) portion where the

circuit was unable to correct for errors in all logical qubits. Here, we also observe a

trade-off similar to the previous simulation for the execution time Texec. For example

Psuccess � 1 for both NP = 50, NAnc = 20 and NP = 16 NAnc = 60 for AvEPR=1.

However if we supply seven EPRs for concurrent inter-ELU gates (right in Figure 5.5),

the region where Psuccess � 1 occupies larger area compared to single EPR case (left

in Figure 5.5) when we have to reuse these e-qbts to regenerate entanglement six

more times.

144

Table 5.1: Combined data for simulations of Figure 5.4 and Figure 5.5. Each entry of
the table contains latency and failure rate pair of the form (Texec,Psuccess) for AvEPR
= 1. Texec is in µs

Texec and Psuccess as functions of AvEPR and Tentgmnt

Next, we explore performance deterioration due to fewer number of e-qbts (AvEPR)

and overhead of entanglement generation time Tentgmnt when NAnc and NP are set

to their maximum value. Both Texec and Psuccess metrics are plotted against different

values of AvEPR and Tentgmnt in Figure 5.6. Lower AvEPR and higher Tentgmnt will

lead to increased latency due to costly entanglement links between ELUs. Resulting

increase in Texec can raise the idle time of the qubits, thereby contributing to memory

errors. However, we note that in several events these memory errors can be fully

corrected, i.e., Psuccess is unity for certain combination of AvEPR and Tentgmnt,

opening up an opportunity for trade-off. For example, Texec � 7014µsec can be

achieved either with AvEPR = 2 and Tentgmnt � 1500µsec, or with AvEPR = 6 and

Tentgmnt � 4500µsec. A consequence of this trade-off is that higher AvEPR values

can compensate for higher Tentngmnt, and lower values of Tentngmnt allows successful

circuit operation with smaller AvEPR.

145

Table 5.2: Combined data for simulations of Figure 5.4 and Figure 5.5. Each entry
of the table contains latency and failure rate value of the form (Texec,Psuccess) for
AvEPR = 7. The Texec is in microseconds

5.4.2 Analysis of Resource Reduction

In order to examine the reduction in the overhead of NAnc and NP , we present

combined data of Simulation (1) and (2) in Table 5.1 and Table 5.2 for AvEPR

= 1 and AvEPR = 7, respectively. Based on the discussion in section 5.3.3, we

only need to determine if we can recover from memory errors for given budget of

Tdec � 5000µsec in our case. Hence we are restricted to work in the shaded regions of

these tables where Psuccess � 1. For AvEPR = 1 case (Table 5.1), Texec increases by

a factor of 1.6 (4789µsec to 7757µsec) for 6 fold reduction in NP (from 50 to 8) and

by factor of 1.3 (4789µsec to 6271µsec) for 3 fold (60 to 20) reduction in NAnc. For

AvEPR = 7 case (Table 5.2), Texec increases 5.5 times (1833µsec to 10442µsec) for

12 fold decrease in NP (from 50 to 4) and by factor of 7.3 (1833µsec to 13416µsec)

for 12 fold reduction in NAnc (60 to 5).

In case of Simulation (3), we will consider shaded portion of the Table 5.3. Recall

that in this simulation we put no constraints on NP and NAnc so that latency is

a function of AvEPR and Tentgmnt alone. In terms of decreasing physical resource

usage, AvEPR is the only candidate, since it counts the number of entangling qubits.

Table 5.3 shows Texec increases by a factor of 1.76 (3161µsec to 5571µsec) for 7 fold

146

Table 5.3: Data for simulations of Figure 5.6. Each entry of the table contains
latency and failure rate value of the form (Texec,Psuccess). Texec is in µs

reduction in AvEPR (7 to 1). Note that this is the maximum attainable reduction

for AvEPR since other physical resources are assumed to be unlimited. However

once NP and NAnc values are bounded then the improvement can only decrease

due to other constraints.

5.5 Discussions

5.5.1 Tool Testing, Verification and Validation

Verification of tool requires that the implementation of its components meet respec-

tive specifications. In our case, we mainly require that our Mapping and Scheduling

algorithms:

• Shall handle specified constraints and inter-ELU gates

• Shall minimize total execution time of the circuit.

To check whether algorithms meet these requirements, both Mapper and Sched-

uler can be verified independently by analyzing our tool design flow, formulation of

sub-problems and their optimization objectives.

Validation requires that tool gives correct result, i.e., it works according to our

expectation under given settings. In a constraint-centric tool, we can compare the

147

simulation results with anticipated correct behavior by setting up important test

cases. These cases can be chosen either according to our initial specifications, expec-

tations or known results from literature. For example we can validate our tool by

verifying the increase in total execution time and failure rate as available resources

are reduced as shown in section 5.4. Scheduler can be validated if it can generate

a complete schedule with minimum number of ancilla qubits for given task, e.g.,

five ancilla for simple Steane error correction circuit. Individual components of the

tool can also be validated independently. In order to validate the Mapper we can

verify if it maps frequently interacting qubits to closely placed ions in the hardware.

Similarly, we can further validate Scheduler by performing two tests. First, under

no constraints, the execution time of the input circuit should be equal to the sum

of execution times of all the gates in the critical path of the circuit. Secondly, if

constraint are tightest, (e.g. NP = 1) execution time should be at least the sum of

execution times of the all the gates in the quantum circuit.

5.5.2 Running Time and Scalability of the Tool

Scalability mainly depends on running time, used as a yardstick to measure the tool

efficiency. All simulations were done for circuit in Figure 5.3 on a system based on

Intel R©Core i3 CPU M370@2.4GHz dual-core processor, containing 1GB of available

physical memory. We find that some constraint variables can adversely effect the

running time while others are more benign.

Figure 5.7 shows that running time is an increasing function of constraints on

NAnc and constant in NP under same AvEPR; as NAnc decreases, running time

increases in general and vice versa. Notice that sharpest increase in running time

occurs when we approach the minimum permissible value of NAnc = 5. This happens

because, as constraint on NAnc becomes tighter, Scheduler may revisit same gate

operation several times before dispatching it for execution. For small NAnc values,

148

Figure 5.7: Tool running time as a function of constraints on NAnc and NP under
no limitations on AvEPR

Figure 5.8: Tool running time as a function of constraints on AvEPR under loosest
(lower curve) and tightest (upper curve) constraints on NP and NAnc

149

very few candidate gates using ancilla are selected for execution in each iteration. In

the current implementation of Scheduler, it may optimistically reconsider rejected

gates in the previous iteration as candidates for executable gates in current iteration.

This leads to several revisits to ancilla gates and dramatic increase in running time.

On the other hand, time is roughly constant with NP since Scheduler uses a buffer

to store when previously dispatched gates are finishing and successfully finds time

slots for all executable gates in the current iteration. Low priority gates competing

under NP constraints may be scheduled for execution later but their start time

is always known and not rejected in a given iteration. This is evident from the six

indistinguishable curves, each corresponding to a different value of NP in Figure 5.7.

Figure 5.8 shows that lower AvEPR value can modestly increase running time

when NP and NAnc are unconstrained. Like NAnc case, once available e-qbts are

occupied for higher priority inter-ELU gates, Scheduler may not know precisely when

these e-qbts will be released, re-entangled and available for other inter-ELU gates.

As discussed earlier, this uncertainty increases ‘less productive’ Scheduler iteration,

which leads to increased running time. The increase shown in the bottom curve is

small, since number of inter-ELU gates in the circuit were few: seven in the whole

circuit. The upper curve shows that under smallest permissible values for NP and

NAnc, the effect of AvEPR on running time seems virtually negligible. This is

due to the fact that NP and NAnc values constitute bulk of total resources in the

simulation.

The effect of NAnc or AvEPR on the running time of scheduler can be minimized

as follows. Rejected gates in previous iteration will keep a flag variable which will

help Scheduler avoid revisiting unnecessary gates in subsequent iteration. Scheduler

can also be modified to pre-calculate time at which occupied ancilla or e-qbts will be

released so that it can generate output more efficiently if calculations are correct. In

the next version of our tool we would like to try and make these changes that might

150

dramatically reduce the running time.

We conclude this section by discussing the efficiency of the Mapper. The place-

ment algorithm in the Mapper scales very well since the main complexity comes from

calculating eigenvectors of the adjacency matrix which can be done in polynomial

time complexity. However because the problem of linear placement is NP-Complete

we can’t always guarantee the best solution. The partitioning algorithm used in this

chapter was based on integer programing gives exact solution which can scale up to

20-35 logical qubits as tested on our system. For small sized quantum circuit exact

solution can be found, however it becomes quickly infeasible as circuit size begins to

grow. In this next chapter we use placement algorithm for partitioning problem as

described in section 4.5.2. Thus we can substantially speedup our mapping module.

5.6 Summary

While the mapping and scheduling algorithms used in our tool are well-known in

classical CAD tools, there are distinct considerations in scheduling quantum circuits

arising from the unique properties of the given quantum computer hardware. The

vulnerability of qubits to decoherence forces the quantum hardware to be heavily

encoded in quantum error correcting codes, that dictates the structure of quantum

circuits at low levels. Since qubits cannot be duplicated, the execution of error cor-

rection procedures requires fresh ancilla qubits as extra resources. Unlike classical

integrated circuits hardware, the ion trap system does not provide high levels of paral-

lel operation in the hardware. Therefore, the efficiency of quantum circuit execution

depend strongly on the availability of these hardware resources and constraints.

In this chapter, we presented simple performance simulation for quantum circuits

under such limited hardware resources, by considering the mapping and scheduling

of quantum circuits on a simple architecture built on MUSIQC hardware. Using this

tool, we showed that significant reduction in physical resource was possible at the cost

151

of modest increase in latency, and potential trade-offs between constraint variables

for given performance were identified. These relations could give architects useful

insights into appropriate investment of physical resources in the quantum computer

hardware. Furthermore, we carefully analyzed the scalability and running time of

toolbox and proposed different ways to make the tool scalable, so that large sized

quantum circuits could be efficiently analyzed. In the next chapter we describe how

to performance simulation sizable benchmark quantum circuit.

152

6

Optimization of a Quantum Computer Architecture

In the previous chapter we analyzed the impact of various hardware constraint vari-

ables on the performance of quantum algorithm. In order to systematically analyze

the larger design space spanned by increasing number of such variables, their ade-

quate categorization becomes inevitable. In this chapter we show that separating

physical attributes of device (called device parameters or DPs) from architecture

description opens interesting framework for systematically optimize design for larger

quantum systems.

We highlight the role of DPs and architecture by quantifying the performance of

a fully error-corrected 1,024-bit Quantum Carry Look-Ahead Adder on a modular,

reconfigurable architecture based on trapped ions. We extend our simulation tool

that estimates the performance and resource requirements for running a quantum

circuit on various quantum architectures as a function of the underlying DPs. Us-

ing this tool, we found that (1) the latency of the adder circuit execution due to

slow entanglement generation process for qubit communication can be adequately

eliminated with a small increase in entangling qubits, and (2) the failure probability

of the circuit is ultimately determined by the qubit coherence time, which needs to

153

be improved in order to reliably execute the adders comprising core of the Shor’s

algorithm.

6.1 Motivation of Study

Performance of computing systems in the early stages of development is dictated

by the quality of component devices in the underlying hardware. Current quality

of available quantum bits (qubits), and the logic operations and interconnects be-

tween them calls for quantum error correction and fault-tolerant construction, which

requires substantial resource overhead in implementing a functional quantum com-

puter. A number of scalable architecture designs have been proposed Metodi et al.

(2005); Van Meter et al. (2008); Whitney et al. (2009); Kim and Kim (2009); Monroe

et al. (2014); Galiautdinov et al. (2012); Fowler et al. (2012a), but a process of op-

timizing the architectural choices for the best system performance based on rapidly

evolving device parameters (DPs) of the hardware platform remains a challenging

problem.

The performance of a quantum architecture can be quantified using adequate

simulation tool. However, the accuracy of the estimated performance outputted

from the tool hinges on the ability of the tool to simulate realistic constraints of the

hardware architecture, such as the availability of scarce resources and the ability to

transport qubits from one place to another within a large scale quantum system. In

this chapter, we extend our previous version of the tool to include flexibility adequate

for the use in architectural optimization as the parameters of the component devices

change. In particular, this simulator is improved to

• handle reconfigurable quantum hardware, where device parameter (DP) values

can be adjusted

• handle reconfigurable quantum architecture, where resource investment scenar-

154

Figure 6.1: Overview of the reconfigurable quantum computer architecture ana-
lyzed in our performance simulation tool.

ios can be studied

• output concrete breakdown of performance metrics (e.g. total execution time

and failure probability) and contents of resource overhead (such as qubits used

as ancilla or for communication purposes). This feature allows the user to

readily identify performance bottlenecks.

Using the advanced version of our tool, we analyze the performance characteris-

tics and resource consumption of scalable and flexible architecture build on MUSIQC

hardware. Our tool allows us to quantify the system performance for a given quan-

tum architecture as a function of the DPs. Given a set of DPs, the architecture space

is searched by varying different types of resource investments to improve the perfor-

mance for a benchmark algorithm, a Quantum Carry Look-Ahead Adder (QCLA)

Draper et al. (2006) in our example. This resource-performance trade-off is measured

by and optimized for the Qubit-Delay product (QD), a metric which captures the

effect of performance gain in execution time per unit resource investment. Once we

extract the best performance from the optimized architecture, the result naturally

exposes the DPs that impose bottleneck on the system performance. This approach

155

provides concrete guidelines for the experimental research to improve the critical DPs

towards the construction of large scale quantum computers. We organize the rest

of the chapter as follows: section 6.2 describes the quantum computer architecture

used in our simulation. Section 6.3 briefly details our toolset, and the results and

relevant discussions are given in Section 6.4. Section 6.5 concludes the study with

possible directions for the future work.

6.2 Quantum Hardware and Architecture Models

In this paper, we refer to ‘hardware’ as the underlying physical device technology to

perform quantum computation, such as trapped ions, superconducting circuits, and

quantum dots. On the other hand, the term ‘architecture’ describes the allocation

and arrangement of different types of quantum resources as larger quantum systems

are considered. For example, the size and the bandwidth of quantum communication

channel and amount of qubits dedicated to fault tolerant quantum operations are

parameters of the architecture.

6.2.1 Quantum Hardware Model

The underlying hardware assumed for this study is MUSIQC hardware containing

qubits stored in two internal states of the atomic ion (e.g., 171Yb� ion Olmschenk

et al. (2007)), described as a two-level spin system, manipulated by focusing ade-

quate laser beams at the target ion(s). The ion qubits are assumed to be individually

addressable Knoernschild et al. (2010), and a single-qubit quantum gate is accom-

plished by a simple application of laser pulse(s) on the qubit in its original location.

The two-qubit gate, on the other hand, requires that both ions are brought in ‘prox-

imity’ before the laser pulse(s) are applied. In our model, there are two ways to

achieve this proximity using two different types of physical resources: the ballistic

shuttling channel (BSC) and the entanglement link (EL) Monroe et al. (2014). BSC

156

provides a physical channel through which an ion can be physically transported from

its original location to the target location by carefully controlling the voltages of the

electrodes on the ion trap chip. In the EL case, an EPR pair is established between

designated proxy “entangling ions” (e-ions) that belong to two independent ion trap

chips using a photonic channel. The resulting EPR pair is used by the actual operand

ions as a resource to perform the desired gate via quantum teleportation between two

ions that cannot be connected by BSC Gottesman and Chuang (1999). It should be

noted that the generation time for the EPR pairs is currently a slow process due to

technology limitation; however, it can be reduced using pipelined EPR Generation

(PEG) at an expense of additional resources Monroe et al. (2014). The details of

this hardware model is provided in chapter 3.

Since the physical distance between ions grows naturally as the size of the com-

puter increases, the choice of communication method between ions is an important

design consideration for both hardware and architecture. In our hardware model,

the communication time is proportional to the physical distance between the qubits

in the system for the BSC, and almost independent of the distance for the EL as

long as the photonic channel can be established (see Sec. 7.3.2 for details). In this

study, BSC is used for the short-distance while EL is used for the long-distance qubit

communication.

6.2.2 Quantum Architecture Model

Figure 6.1 shows the hierarchical model of the modular scalable universal architecture

chosen for our analysis Monroe et al. (2014) supported by MUSIQC hardware. At the

bottom of the hierarchy, architecture maps ELUs to the Tiles made of memory cells

and BSC regions Metodi et al. (2005). Memory cells provide storage and manipula-

tion of qubits for quantum gates, whereas BSCs allow rapid transportation of qubits

to facilitate multi-qubit gates between memory cells. The physical qubits in the Tile

157

are encoded into a logical qubit using a quantum error correcting code (QECC) of

choice (the Steane code is used in our model), and the error correction is performed

at regular intervals to preserve the logical qubit from degrading. Multiple layers of

encoding can be concatenated to dramatically improve the protection against errors

at the expense of increased number of qubits and circuit complexity used for the error

correction. For example a Tile supporting two layers of Steane encoding (L2 Tile) has

lower failure probability compared to single layer of encoding (L1 Tile) but contains

up to seven times more qubits. In addition to the error correction, Tile is equipped

to perform other necessary operation which defines its architectural functionality:

state preparation (Ancilla Tile), basic fault tolerant quantum gate operations (Data

Tile) and long distance communication between two Tiles (Communication Tile).

These Tiles are sufficient to construct a scalable architecture.

At the next level of the hierarchy, multiple Tiles are arranged to form an extended

ELU called Segment that performs complex fault tolerant circuit level gate opera-

tions. For example, a Segment groups necessary set of Tiles to execute a fault toler-

ant Controlled-Controlled-NOT (CCNOT, or Toffoli) gate, widely used in quantum

arithmetic circuits Draper et al. (2006). The Tiles within the Segment communi-

cate through BSC. As more Tiles are assembled into a Segment, the communication

among Tiles within a Segment will require constituent qubits to move over longer dis-

tances, where shuttling becomes costly. Therefore at the the third level of hierarchy,

Segments are connected to each other through a reconfigurable optical cross-connect

switch Kim et al. (2003). The entangling ions comprising the Communication Tiles

from any pair of Segments within the system can be connected by establishing an

EPR pair between them using the photonic channel. This feature makes the cost of

inter-Segment communication (and gates between logical qubits in the correspond-

ing Segments) independent of distance, a unique feature of the MUSIQC architecture

that provides significant advantages in implementing useful quantum circuits Monroe

158

et al. (2014).

The performance of the quantum computer for executing a chosen application will

depend on the size and composition of the Segments used in the architecture. By

varying the architecture parameters (resources) such as number of Segments (NSeg),

total Ancilla Tiles (NAnc), and Communication Tiles per Segment (NComm), we

can minimize the impact of DPs on the performance metrics: execution time Texec

and failure probability 1�Psucc. Identifying specific DPs which become performance

bottlenecks for various architectures is the main contribution of this work.

6.2.3 Error Model and Baseline Device Parameters

For the simulations, we assume the following as the baseline DPs. A simplified

depolarizing channel (equal probability of bit flip, phase flip) is assumed as the

underlying error model Nielsen and Chuang (2000), with fixed physical gate error

probability of 10�7 for both single-qubit and two-qubit gates. Furthermore, qubit

memory error is modeled as an exponential decay in its fidelity F � expp�atq, where

a (=1{Tcoh) is determined by the coherence time of the qubit assumed to be Tcoh=

10s, and t is the time between quantum gates over which qubit sits idle (No-op). It is

assumed that a single-qubit gate takes 1µs, a two-qubit gate 10µs, and a three-qubit

Toffoli gate and measurement each takes 100µs. For BSC, since the dimensions of

the state of the art ion-trap cell described in Monroe and Kim (2013) fall in the

�mm size range, we use Tshutt � 1µs as the time it takes for an ion to be shuttled

through the cell. For a L2 Tile which contains 600 cells arranged in a 2-D grid, the

time to shuttle logical qubit through the Tile is taken as 60µs.

For EL, we assume that the entanglement generation time Tgen between two Seg-

ments using one optical switch is 5, 000µs. The size of the optical switch is restricted

to 1,000 ports Kim et al. (2003) which can connect up to 20 Segments using 49

optical fibers/L2 Communication Tile. This means that as the number of NSeg

159

or NComm increases, multiple optical switch ports will be needed to connect the

Segments, which are arranged in a tree-like network topology, as shown in Figure6.1.

The time cost of establishing an entangled pair through such a network will depend

on the the height H of the switch in the tree hierarchy, as the photons will have

to propagate through additional switches incurring more photon loss. We adjust

new T 1
gen as 2H � Tgen. The resulting EPR pair has non-zero infidelity characterized

by EPRinf which will be taken as 10�4, unless otherwise specified. These DP val-

ues are optimistic, but most of them are realistically achievable through aggressive

technology development in the near future.

6.2.4 Benchmark Application Algorithm

In order to analyze the performance, one must choose a benchmark algorithm against

which the performance of various quantum architectures is compared. We select a

1,024-bit quantum carry look-ahead adder (QCLA) as the benchmark algorithm Draper

et al. (2006). Such adder circuit forms the elementary building block of a modular

exponentiation circuit that underlies the execution time of Shor’s prime number

factorization algorithm Vedral et al. (1996b). At the logical level, QCLA can be im-

plemented effectively a CNOT and Toffoli gates and provides an efficient logarithmic-

depth adder in terms of overall execution time, provided a mechanism for executing

these gates between remote qubits is available in the architecture. The EL channels

in MUSIQC is an ideal physical process that provides such capability.

6.3 Tool Description

We saw in chapter 4 that our complete tool consisted of two main components: Tile

Designer and Performance Analyzer (TDPA), and Architecture Designer and Perfor-

mance Analyzer (ADPA). The tool components used in previous chapter belonged

to the TDPA (Figure 4.1) as they directly laid out flattened circuit on the hardware.

160

In this study we leverage same TDPA functionalities to map the fault tolerant cir-

cuit blocks to the Tile whose performance is then computed and stored as functions

parametrized by DPs similar to that described in the chapter 5. This allows TDPA

to produce a spectrum of Tiles for ADPA, with different number of physical qubits

having different performance levels depending on DP values. For baseline DPs in

Figure 6.1, TDPA computes the performance of a unified L2 Tile (which can act as

Data, Ancilla and Communication Tile) in Table 6.1.

The main advancement to the tool is the addition of ADPA, indicated by shaded

components in Figure 6.2. The ADPA is designed to map application circuits onto

the reconfigurable architecture shown in Figure 6.1 described by user-provided ar-

chitecture parameters and DPs. Based on these parameters, initial map of available

Tiles (obtained from TDPA) to be assembled in the Segments is first generated.

During this process, the Assembler maximizes the locality among Data Tiles (com-

puted from the connectivity of logical qubits in the circuit) by solving Optimal Linear

Arrangement Problem using efficient graph-theoretic algorithm Juvan and Mohar

(1992). The Scheduler of ADPA generates the sequence of gates for QCLA execution

by solving the standard Resource-Constraint Scheduling problem using ASAP (As

Soon As Possible) heuristic. Texec is minimized by reducing the circuit critical path

through maximum utilization of available resources. The Scheduler also maximizes

Psucc by scheduling error correction on Data Tiles at regular intervals when they sit

idle. The overall Psucc is computed by Error Analyzer as
±i�N

i�1 p1�PLiq, where PLi is

the failure probability of the i-th logical gate and N is the total number of logical op-

erations in the circuit. The failure probability for each logical gate was pre-computed

using Fault Path Counting Method Aliferis et al. (2005). Error Analyzer keeps track

of the operational source of each PLi [such as Shuttling, Teleportation, Memory (or

No-Op) or Gate] while scheduling is in progress. This way, 1�Psucc is considered as

a sum of errors for Shuttling, Teleportation, Memory and Gate operations.

161

Table 6.1: L2 Tile Performance Numbers

Logical Operation Texecpµsq 1� Psucc

Pauli gate (X, Z) 1 7.4� 10�24

Hadamard gate 4 7.4� 10�24

CNOT gate 18 4.74� 10�22

Toffoli gate 108 2.9� 10�21

7-qubit cat-state prep. 780 2.67� 10�22

Measurement 814 1.32� 10�17

Error Correction 4830 6.86� 10�16

State prep. (|0y,|�y) 5644 6.99� 10�16

EPR pair connection Tgen � 5662 6.3� 10�11

ADPA also performs breakdown of Texec using critical path analysis, which (1)

splits the circuit critical path into transportation latency overhead incurred due

to the movement of qubits across the hardware (this includes Shuttling overhead

T SHUTovhd and Teleportation overhead and T TELovhd), and (2) calculates total number of

logical gates comprising critical path NCRT
ovhd that captures the magnitude of serialized

execution of parallel operations, enforced by fewer shared resources. The splitting of

the performance variables using Performance Metrics Decomposer is a unique feature

of our tool, which allows us to identify critical DPs and architecture parameters

to drive quantum architecture optimization. It is important to note that the basic

version of Performance Metrics Decomposer in this study was further enhanced in the

next (and final) version of the toolbox. The interested reader can refer section 4.14

for complete details.

6.4 Simulation Results

Our analysis strategy consists of a sequence of simulation sets, each corresponding

to a DP set and an architectural construct. Each set provides performance metrics

(Texec, Psucc) for executing the benchmark algorithm, and identifies bottlenecks that

162

Figure 6.2: Shaded blocks representing tool components used in this chapter and
their role in the complete toolbox

limit the performance, such as resources or device parameters. Once specific bot-

tlenecks are identified, performance can be improved by adding relevant resources

(NAnc or NComm). Increased resources will enhance performance (Texec) as long

as they help mitigate the bottleneck, but cease to impact the performance at some

point where the bottleneck is fully removed. Once Texec is reduced to its minimum

value, we can tune appropriate device parameters to improve Psucc to acceptable

values.

However, the search space for the optimal architecture is very large (combinato-

rial function of NSeg, NComm and NAnc), and a blind exhaustive search is not an

effective approach. Our tool is capable of revealing the detailed breakdown of perfor-

mance metrics and resource investment for each simulation run. At each stage of the

analysis, we can efficiently achieve performance improvement by identifying and then

163

Figure 6.3: Execution time plotted as function of (a) NAnc and (b) NComm. (a)
shows curves for both SA-and Tel- regimes and sample breakdown of Texec for certain
points for NComm = 1. Each Segment needs to have minimum of 4 Ancilla Tiles
for preparation of ancilla state needed for Toffoli gate, so minimum NAnc increases
with NSeg and reduces the number of data points for larger NSeg. (b) shows
Texec as a function of NComm for maximum NAnc = 5,448. Note that SA-Regime
curves (NSeg 16) remain flat with NComm since T TELovhd does not contribute to
the execution time.

eliminating specific bottlenecks by adding adequate resources, until the performance

is limited by the underlying DPs of the hardware technology. This process signifi-

cantly simplifies the complicated study of resource-performance trade offs. For the

purpose of demonstrating the efficacy of our analysis strategy, we utilize a lumped

resource-performance metric QD defined as the product of total number of physical

qubits and Texec (qubit-delay product), and look for major trends in architectural

choices that minimize this metric. Our search for optimal quantum architecture

proceeds in three steps: (1) searching for the architecture space, (2) selecting an

architecture, and (3) improving performance through enhanced DPs.

6.4.1 Searching in the Architecture Space

We first search the architecture space for a range of NSeg that represent the “lo-

cality” of the quantum architecture (larger NSeg means the computer is more dis-

164

tributed). For a range of NSeg, the space is traversed by plotting Texec and Psucc as

a function of NAnc. Figure 6.3(a) shows the total execution time for the benchmark

algorithm as additional ancilla qubits are provided to the segments. The architecture

space spanned by NSeg can be categorized into two groups: one group with small

NSeg (=1 and 4) in which Texec decreases with NAnc and the rest with medium

to large NSeg (¡16) in which it remains roughly constant after certain amount of

NAnc is provided. The performance of the first set of architectures is limited by

the cost of substantial amount of shuttling and limited supply of ancilla, and we

call this the Shuttling-Ancilla Regime (SA-Regime). In the second set of architec-

tures, the performance is limited by providing the EL between multiple segments by

the slow EPR pair generation process, and is called the Teleportation Regime (Tel-

Regime). The curve set for NSeg = 16, in which Texec first decreases with NAnc

and then becomes almost flat, can be considered as a transition point between SA-

and Tel-Regimes, and clearly shows a smooth transition between these two regimes.

In the SA-Regime, large number of Data Tiles are clustered into each Segment.

Lower NAnc increases Texec, because a large number of concurrently executable

logical Toffoli gates in the QCLA may not be scheduled in parallel due to limited

availability of ancilla qubits required for carrying out the logical Toffoli gate Monroe

et al. (2014). Increasing NAnc takes large number of logical Toffoli gates away from

the critical path of circuit execution which lowers Texec. In contrast, Tel-Regime

features large number of smaller sized Segments leading to decreasing intra-Segment

locality among Data Tiles. The inter-Segment non-local gates must be carried out by

utilizing EL, and the performance is limited by slow Tgen in this regime. The callouts

in Figure 6.3(a) highlights the main contributor to the performance bottleneck. For

NSeg = 1 case in the SA-Regime, the lack of parallelism due to limited NAnc is the

main bottleneck in the NAnc=4 case, which can be eliminated by increasing NAnc

to 5,448. For the NSeg = 16 case in the Tel-Regime (NAnc=5,448), the main

165

bottleneck is the teleportation latency overhead due to slow Tgen. This teleportation

overhead can be mitigated by adding more communication tiles per segment, as

shown in Fig 6.3(b). Increasing NComm reduces Texec since EPR pair generation can

be parallelized to remove communication latencies on the critical path. In this case,

the maximum achievable reduction in Texec is 5.8 (from 9.27 to 1.6) accomplished by

increasing total physical qubits by 3.4%. For highly distributed architectures (very

large NSeg), increasing NComm further decreases the entanglement generation time

as the height H of switch tree hierarchy increases, substantially increasing the T 1
eng.

Figure 6.4 shows the trends of failure probability Pfail across the architecture

space. We find that Pfail in SA-Regime generally increases with NAnc, whose dom-

inant component is the error incurred during shuttling, as shown in Table 6.2. In

large Segments where most of the data movement is carried out by shuttling, increas-

ing NAnc leads to longer shuttling path lengths due to further distances between

the Data Tiles (therefore shuttling error). In Tel-Regime, memory and teleportation

errors are dominant components of Pfail. Increasing NAnc has minimal impact on

Pfail in this regime since the contribution of shuttling error is very small. The num-

ber of cross-segment teleporations (indicated as Tel in the figure) does not have a

big impact on Pfail. Table 6.2 shows that although the fraction of teleportation error

increases with NSeg, the overall Pfail remains consistently low for the architectures

in the Tel-Regime.

6.4.2 Selecting an Architecture

Once resource bottlenecks are identified for the SA- and Tel- regimes, we identify

optimal architectures in each regime by considering both resource budget and per-

formance captured by the Qubit-Delay (QD) product. Figure 6.5 shows the perfor-

mance (Texec on the left axis) and resources (total number of physical qubits on the

right axis) as a function of relevant resource bottlenecks for the SA-Regime [NAnc,

166

Figure 6.4: The failure probability (1� Psucc) as a function of NAnc. The failure
probability shows an overall increasing trend for the curves in SA-Regime, while it
remains almost flat in Tel-Regime.

Table 6.2: Breakdown of the 1 � Psucc for different NSeg. The average value is
computed over combinations of NAnc and NComm.

167

Figure 6.5: Comparison of candidate architectures in each regime. Explicit vari-
ation of Texec and total number of physical qubits for selected architectures in SA-
Regime is shown in (a) while those for Tel-Regime is shown in (b).

Figure 6.5(a)] and Tel-Regime [NComm, Figure 6.5(b)]. For clarity, we present

two suitable examples from each regime for comparison (among all the architectures

analyzed) that yield smallest QD minima.

For the architectures in the SA-Regime, we show two representative simulations

for NSeg = 4 and 8 in Figure 6.5(a). As NAnc increases, Texec for the less distributed

case (NSeg=4) continues to decrease, whereas the more distributed case saturates as

the computation becomes limited by Tgen. Since the total number of qubits in both

cases are the same, we see that (NSeg=4, NComm=1, NAnc=1,362) is an optimal

case that minimizes QD metric in the SA-Regime. This is confirmed by comparing

the QD metric for other NSeg values in this regime. The performance metric for

running the benchmark algorithm is (Texec � 2.22s, 1� Psucc � 8.86� 10�6) for this

case.

For the architectures in the Tel-Regime, we show two representative simulations

for NSeg = 16 and 1,362 in Figure 6.5(b), when sufficient NAnc is provided (5,448).

From the comparison of Texec, we see that both architectures reach the minimum

168

Table 6.3: Failure probability vs. memory error rate and shuttling time. Tgen �
5000µs. NComm = 1, NAnc = 1,362. #phys. qubits = 1,439,788.

computation time of about 1.3s, although at different values of NComm (4 per Seg-

ment for NSeg = 1,362 case, and 6 per Segment for NSeg = 16 case). However,

the total number of qubits is much less when NSeg = 16, so this is a better archi-

tecture in terms of QD metric. For this architecture, Texec decreases about 6 folds

for nominal (4.2 %) increase in total number of qubits. By comparing a range of

NComm and NAnc values in this regime, we conclude that (NSeg=16, NComm=6,

NAnc=1,362) is the optimal design in the Tel-Regime. The performance metric for

running the benchmark algorithm is (Texec � 1.93s, 1 � Psucc � 2.77 � 10�6) for

this case. Note that in both cases Texec is within a factor of 2 from its minimum

value 1.05s, which can be computed by scheduling the benchmark algorithm under

no hardware constraints. Adding more qubits to these architectures cannot provide

noticeable performance gains, especially for Psucc.

169

Table 6.4: Failure probability vs. memory error rate and physical EPR pair infidelity.
Tgen reduced to 250µs using PEG at the expense of additional communication qubits
per port. The Tshutt is tuned to 0.1µs. NComm = 6, NAnc = 5,448. #phys. qubits
= 2,733,432.

Table 6.5: Effective execution time (in days) of running 1,024-bit modular exponen-
tiation circuit on optimized architectures

6.4.3 Improving Performance through Device Parameters

Failure probability for selected architecture can be reduced by improving the domi-

nant sources of errors in respective regimes which can be identified from Table 6.2. In

the SA-Regime, the dominant source of error is memory error while waiting for shut-

tling operation to complete. By either speeding up the shuttling speed or increasing

coherence time of the memory qubits, 1�Psucc can be reduced dramatically, as shown

in Table 6.3. For example, when Tcoh is increased 10 fold and Tshut is accelerated

170

slightly from 1µs to 0.7µs, 1� Psucc falls drastically by 103 fold (from 8.86� 10�6 to

6.78� 10�9). Further improvements in the shuttling time improves neither Psuch nor

Texec, indicating that the shuttling time is no longer the performance bottleneck in

this limit.

In the Tel-Regime, EPR pair fidelity and memory errors are the main contributors

to the failure probability. In order to further reduce the memory errors arising from

waiting for the EPR pair generation, one must dramatically reduce Tgen, which can

be achieved by pipelined EPR generation (PEG) process Monroe et al. (2014). For

the numbers shown in Table 6.4, we assume a 20-fold reduction in Tgen using the

PEG technique, as well as sufficient ancilla qubits (NAnc = 5,448). A ten fold

increase in Tcoh provides more than 103 fold reduction in 1�Psuch (from 1.38� 10�6

to 9.58� 10�10) if the infidelity of the EPR pairs is improved to 10�5.

In order to execute 1,024-bit modular exponentiation circuit which comprises bulk

of Shor’s algorithm, about 4 million calls to adder is required Van Meter and Itoh

(2005). Thus we need each 1,024-bit adder to be successfully executed with failure

probability of ! p4 � 106q�1 � 2.5 � 10�7. The shaded regions in Table 6.3 and

Table 6.4 provides combination of memory error rates with shuttling time or EPR

pair infidelity which achieve 1� Psucc required to reliably execute 1,024 bit modular

exponentiation. Recall from section 1.3.3, that due to the non-zero failure probability,

Shor’s algorithm may be executed multiple times until the input integer is successfully

factored. We defined the ‘effective execution time’ by taking into the account, the

number of repetition required for the successful execution of quantum algorithm.

For 1,024-bit modular exponentiation containing 4 million calls to the adder circuit,

each with execution time: Texec and fails with probability Pfail, we define effective

execution time as: 4�106�Texec
p1�4�106�Pfailq . For the shaded regions in Table 6.3 and Table 6.4,

the effective execution time for the 1,024-bit modular exponentiation running on

171

optimal architectures in SA- and Tel-Regime is shown in Table 6.5. It can be seen that

in order to successfully execute bulk of Shor’s algorithm in three months, we need to

increase the coherence time to 100 sec (a � 1{100) for both architectures. In addition,

we need to tune architecture specific critical device parameters to lower the effective

execution time below the desired value. For SA-Regime, shuttling time should be

0.7µs or less whereas for Tel-Regime, the infidelity of EPR pair should be kept 10�5

or lower, to ensure that successful execution of entire modular exponentiation circuit

takes no more than three months.

6.5 Summary

In this chapter, we highlighted the impact of device parameters and architectures on

the performance of quantum systems using a resource-performance simulation tool.

This simulation analysis shows that using baseline device parameters, architecturally

optimized system can achieve Texec limited by the ancilla in SA-Regime and commu-

nication qubits Tel-Regime. However, the error performance was not quite sufficient

to execute a 1,024-bit Shor’s algorithm. The coherence time of the memory qubits

is the critical device parameters that limits the error performance, and this aspect

of the performance cannot be improved by complementing the system with more

resources. These DPs were systematically identified by analyzing the breakdown of

performance bottlenecks once sufficient resource have been invested in the system.

In both SA- and Tel-Regimes, we see that an order of magnitude improvement in

the coherence time of the qubits dramatically enhances the error performance (by a

factor of 103), and ensure successful execution of a practically useful algorithm. The

analysis was facilitated by adding advanced flexibilities in the simulation tool that

will allow complete analysis of resource-performance trade-off analysis for a given set

of technology parameters. We provide an effective and systematic approach to such

optimization in a vast architecture-device parameter space.

172

7

Designing a Million-Qubit Quantum Computer

In the last chapter we proposed a methodology of designing quantum computer for

one type of application circuit. However, many interesting problems such as integer

factorization comprise contrastingly structured blocks. Hence it is important to

analyze the proposed design method across range of benchmark circuits. In this

chapter we analyze all essential building blocks of Shor’s factorization algorithm and

identify important architecture and device parameters (DPs) which are crucial for the

overall performance. We also investigate the scalability of the chosen design with the

increasing problem size and introduce “general-purpose quantum computer” which

can be reconfigured to match the resource-performance needs of given benchmark

circuit.

The optimal design for such general-purpose quantum computer depends on ap-

propriate balance of different types of hardware units performing their roles within

the application. This balance can be evaluated using a simulation tool capable of

accurately modeling the scheduling of quantum logic operations on a given quantum

hardware. In this chapter we extend our performance simulation tool to be fully

capable of analyzing the performance bottlenecks and visualizing resource utiliza-

173

tion that provides a means to validate the optimality of the architecture. Using this

tool, we search for an optimal design of a modular quantum computer architecture

based on trapped ions, over several benchmarking circuits crucial for Shor’s factoring

algorithm. We demonstrate that an efficient quantum computer capable of factoring

a 2,048-bit number can be constructed in three million physical qubits.

7.1 Motivation of Study

Although quantum computers can in principle solve important problems such as fac-

toring a product of large prime numbers efficiently, the prospect of constructing a

practical system is hampered by the need to build reliable systems out of faulty

components. Fault-tolerant procedures utilizing quantum error correcting codes

(QECC) achieve adequate error performance by protecting the quantum informa-

tion from noise, but come at the expense of substantial resource investment Nielsen

and Chuang (2000). The quantum threshold theorem says that a quantum compu-

tation of arbitrary size can be performed as long as the error probability of each

operation is kept below a certain threshold value and sufficient computational re-

sources such as the number of quantum bits (qubits), can be provided to implement

adequate fault-tolerant construction Aharonov and Ben-Or (1997). Although this is

an encouraging theoretical result, an accurate estimate of the resource overhead re-

mains an extremely complex task, as it depends on the details of the hardware (qubit

connectivity, gate speeds and coherence time, etc.), the choice of protocols (QECC,

etc.), and the nature of the target algorithms. Several application-optimized architec-

tures have been proposed and analyzed Metodi et al. (2005); Van Meter et al. (2008);

Whitney et al. (2009); Kim and Kim (2009); Monroe et al. (2014); Galiautdinov et al.

(2012); Fowler et al. (2012a), yet the accurate quantification of resource-performance

scaling for different benchmarks remains a challenging problem.

In this study we also quantitatively define the ‘scalability’ of a quantum computer

174

architecture to mean that the resource overhead of running a quantum algorithm,

while sustaining expected behavior in execution time and success probability (of or-

der unity, � Op1q), increases linearly with the problem size. We propose a modular

ion-trap-based QC architecture and quantify its scalability for three different bench-

mark circuits crucial for Shor’s factoring algorithm Shor (1997): a quantum carry

look-ahead adder (QCLA) Draper et al. (2006), the CDKM quantum ripple-carry

adder (QRCA) Cuccaro et al. (2004), and an approximate quantum Fourier trans-

form (AQFT) Fowler and Hollenberg (2004). This architecture features fast and

reliable interconnects to ensure efficient access to computational resources, and en-

ables flexible distribution of computational resources to various workload-intensive

parts of the quantum system depending on the circuit being executed. By evaluating

this architecture for a variety of benchmarks, we show that it can achieve optimal

performance by flexible and efficient utilization of given resources over a range of

interesting quantum circuits.

To quantify the performance of an architecture as a function of available resources,

we utilize our performance-simulation tool similar to those reported in Refs. Svore

et al. (2006a); Whitney et al. (2007); Balensiefer et al. (2005b); Whitney et al. (2009)

that (a) maps application circuits on to the quantum hardware, (b) generates and

schedules the sequence of quantum logic gates from the algorithm operating on the

qubits mapped to the hardware, and (c) estimates performance metrics such as total

execution time and failure probability. Unlike the tools reported previously, our

tool features unique capabilities to (1) simulate performance over varying hardware

technology parameters, (2) allow dynamic resource allocation in the architecture, (3)

provide detailed breakdown of resource and performance variables, and (4) enable

visualization of resource utilization over (5) a range of benchmark applications. By

leveraging these unique attributes we search the architecture space for a suitable

design while providing valuable insights into the factors limiting performance in a

175

large-scale quantum computer. It is highly recommended to review chapter 4 which

comprehensively covers final version of the tool used in this study.

Our analysis proceeds in four steps. First, we demonstrate the scalability of

our proposed architecture in the presence of resource constraints by simulating the

resource-performance trend as a function of the size of benchmark circuits. Next,

we analyze the dependence of the performance metrics on the available resource

across these circuits, and show that the performance of a resource-intensive circuit

degrades in the presence of resource constraints. As an example, the advantage of

the logarithmic-depth QCLA over the linear-depth QRCA can be sustained only up

to a certain problem size in a given hardware, under which the necessary parallel

operations can be effectively exploited. We then provide an optimal computer design

under the resource constraints, which our tool found by exhaustively searching the

large combinatorial space spanned by the set of architecture parameters. Once exe-

cution time is optimized, we identify relevant device parameters to achieve minimum

failure probability to schedule 2,048-bit Shor’s algorithm.

This chapter is organized as follows: section 7.2 describes benchmark quantum

circuits and their characteristics. Section 7.3 describes the underlying quantum hard-

ware technology and the modular, reconfigurable quantum architecture used in our

simulation. The section 7.4 details the toolset and its main features. The simula-

tion results along with detailed discussions are given in section 7.5. The section 7.6

concludes with the summary of insights gained from this study.

7.2 Quantum Circuits Revisited

7.2.1 Universal Quantum Gates for the Steane code

Quantum circuits consist of a sequence of gates on qubit operands. An n-qubit quan-

tum gate perform a deterministic unitary transformation on n operand qubits. In

the terminology of computer architecture, a gate corresponds to an “instruction” and

176

the specific sequences of gates translate into instruction-level dependencies. Similar

to classical computers, it is known that an arbitrary quantum circuit can be con-

structed using a finite set of gates (called universal quantum gates), which is not

unique) Nielsen and Chuang (2000). For fault-tolerant quantum computation, one

has to encode the qubits in a QECC, and perform logic gates on the encoded block

of logical qubits Nielsen and Chuang (2000).

There are two ways of performing gates on a logical qubit: in the first is where the

quantum gate on logical qubit(s) is translated into a bit-wise operation on constituent

qubits (referred to as a “transversal” gate). Since an error on one constituent qubit

in the logical qubit cannot lead to an error in another constituent qubit in the

same logical qubit, the error remains correctable using the QECC and therefore a

transversal gate is automatically fault-tolerant. For a good choice of QECC, most

of the gates in the universal quantum gate set are transversal, and therefore fault-

tolerant implementation is straightforward. Unfortunately, for most of the QECC

explored to date (the class of QECC called additive codes), it is impossible to find a

transversal implementation of all the gates in the universal quantum gate set Zeng

et al. (2011). A second, general procedure for constructing such gates involves fault-

tolerantly preparing a very special quantum state, called the “magic state”, and

then utilizing quantum teleportation to transfer the operand qubit into the magic

state to complete the gate operation Zhou et al. (2000). This operation is generally

much more resource intensive and time consuming, so minimizing such operations is

a crucial optimization process for the fault-tolerant circuit synthesis.

We employ the widely used Steane code which invests seven qubits to encode

one more strongly error-protected qubit. For the universal gate set, we utilize {X,

Z, H, CNOT, Toffoli} for the adder circuits (both QCLA and QRCA), and {X,

Z, H, CNOT, T} for the AQFT circuit. For a single qubit state α|0y � β|1y, X
and Z correspond to the bit-flip and phase-flip operation that takes the state to

177

α|1y � β|0y and α|0y � β|1y, respectively, and span a Pauli group of operators. H is

the Hadamard operator, which converts the computational basis states |0y and |1y
to the equal linear superposition of two states |�y � p|0y � |1yq{?2, and vice versa.

CNOT is a two-qubit gate where the state of the second qubit (called the target

qubit) is flipped if and only if the state of the first qubit (called the control qubit) is

|1y. Along with the Pauli operators, H and CNOT span a Clifford group of operators

(Clifford gates). In the Steane code, all operators in the Pauli and Clifford group

can be implemented transversally. However, in order to complete the set of universal

quantum gates, a non-Clifford gate must be added. This could be either the T gate

(sometime called the π{8-gate), a single-qubit gate which shifts the phase of the |1y
state by π{4, or the Toffoli gate (sometimes called the Controlled-Controlled-NOT),

a three-qubit gate where the state of the third qubit is flipped if and only if the

state of the first and second qubits are both |1y. Using either gate is equivalent, in

the sense that a Toffoli gate can be constructed using several T gates and Clifford

gates Nielsen and Chuang (2000). Fault-tolerant implementation of a non-Clifford

gate requires magic state preparation when the Steane code is used. Figure 7.1 shows

the fault-tolerant implementation of the Toffoli gate, where the Toffoli magic state

is prepared with the help of four ancilla qubits followed by the teleporation of the

operand qubits into the magic state.

7.2.2 Benchmark Circuits

Figure 7.2 shows that Shor’s factoring algorithm consists of an arithmetic calculation

called modular exponentiation Van Meter and Horsman (2013); Vedral et al. (1996a);

Beckman et al. (1996b) which can be constructed from adder circuits, followed by a

quantum Fourier transform Shor (1997). Arithmetic circuits like adders (QCLA and

QRCA) can easily be constructed from X, CNOT and Toffoli gates, while AQFT can

be constructed more conveniently from T gates. We consider a quantum architecture

178

Figure 7.1: Fault tolerant circuit for Toffoli gate used in adder benchmarks. |αyL
denotes a logical qubit block representing the state |αy.

where both Toffoli and T gates can be executed, and optimize the architecture for

executing all required quantum circuits for running Shor’s algorithm.

Quantum adders

A large number of quantum adder circuits must be called to complete the modular

exponentiation that constitutes the bulk of Shor’s algorithm. We select two candi-

date adders QRCA and QCLA, representing two vastly different addition strategies,

analogous to classical adders. QRCA is a linear-depth circuit, containing serially con-

nected CNOT and Toffoli gates: an n-bit addition will consume about 2n qubits to

perform 2n Toffoli and 5n CNOT gates Cuccaro et al. (2004). The sequence of these

gates is inherently local, and nearest-neighbor connectivity among the qubits is suf-

ficient to implement this circuit. On the other hand, QCLA is a logarithmic-depth

[� 4 log2 n] circuit connecting 4n qubits utilizing up to n concurrently executable

gates Draper et al. (2006). This circuit roughly contains 5n � 3 log2 n CNOT and

179

Figure 7.2: The block diagram of Shor’s algorithm. The Modular Exponentiation
(ME) comprise the bulk of circuit. This circuit is constructed from modular mul-
tipliers which consists of modular addition requiring quantum adders. The inverse
Quantum Fourier Transform is applied as the last step of the algorithm before result
is read out.

Toffoli gates for n-bit addition. The exponential gain in performance (execution

time) come at the cost of sufficient availability of ancilla qubits and rapid communi-

cation channels among distant qubits to exploit parallelism. The quantum hardware

model considered here is unique in providing the global connectivity necessary for

implementing QCLA. We study the resource-performance tradeoff in selecting QCLA

vs. QRCA in Section 7.5.

180

Approximate quantum Fourier transform

The quantum Fourier transform (QFT) circuit is often used as the order-finding rou-

tine in Shor’s algorithm Nielsen and Chuang (2000). It contains controlled-rotation

gates Rzpπ{2kq, where the phase of the target qubit is shifted by π{2k for the |1y
state if the control qubit is in the |1y state, for 1 ¤ k ¤ n, in a n-qubit Fourier trans-

form. Fig. 7.3 shows that the controlled-rotation gates can first be decomposed into

CNOTs and single-qubit rotations with twice the angle. These rotation operations

are not in the Clifford group for k ¡ 1, and must be approximated using gates from

the universal quantum gate set Nielsen and Chuang (2000). A recent theoretical

breakthrough provides an asymptotically optimal way of approximating an arbitrary

quantum gate with a precision of ε using only Oplogp1{εqq Clifford group and T gates,

and a concrete algorithm for generating the approximation circuit Kliuchnikov et al.

(2013); Giles and Selinger (2013).

It has been shown that a QFT circuit can yield the correct result with high enough

probability even if one eliminates all small-angle rotation gates with k ¡ 8, sufficient

to factor numbers as large as 4096-bits Fowler and Hollenberg (2004). The resulting

truncated QFT is called approximate QFT (AQFT). The depth of this benchmark

circuit is linear in the size of the problem n, and the total number of controlled-

rotation gates scales as 16n. Using the method outlined in Ref. Kliuchnikov et al.

(2013), we approximate rotations in our AQFT circuit with a sequence of 375 gates

(containing 150 T gates), with a precision of 10�16. The resulting approximation

sequence consists of T (or T :) gates sandwiched between one or two Clifford gates,

whose execution time is negligible compared to the T gate. The execution of the T

gate proceeds in two steps: preparation of the magic state T |�y and teleportation of

data into the magic state. Since state preparation is much longer than teleportation

(78 ms vs 12 ms), we can employ multiple hardware units to prepare magic states to

181

Figure 7.3: Fault-tolerant circuit for a controlled-rotation gate used in AQFT
benchmark circuit. Small angle rotation gates are approximated by a sequence of T
and Clifford gates, and the T gates are performed by magic state preparation and
data teleportation.

simulate pipelined execution of T gates. When multiple ancilla qubits are available

for the magic state preparation, we can reduce the delay in the execution of the

approximation sequence. Using a simple calculation, we can show that the availabil-

ity of 8 ancilla qubits completely eliminates any delay. When the error correction

procedure is inserted in the approximation sequence, its latency can be leveraged to

eliminate the preparation delay with even fewer ancilla qubits.

182

7.3 Quantum Hardware and Quantum Architecture Models

As used in previous chapter, the term quantum hardware describes the physical de-

vices used to achieve computation using a specific technology Ladd et al. (2010a)

such as trapped ions, atoms, superconductors, or quantum dots. The efficiency and

reliability of quantum computation depend on the characteristics of the chosen tech-

nology, such as execution time and fidelity of physical gate operations. We describe

the physics of the quantum hardware by a set of device parameters. In our simulation,

the assumed baseline values for these parameters are optimistic, but can be achieved

in the near future through rapid technology advancement. Once quantum hardware

technology is specified, we arrange the qubit resources according to their specific

roles and their interconnection in order to assemble a large-scale computer. This is

captured by the parameters of the quantum architecture. For example, number of

qubits dedicated to perform fault tolerant quantum operations and the specification

of communication channels are considered architecture parameters.

7.3.1 Quantum Hardware Model

We model quantum hardware based on trapped ions for its prominent properties

that have been demonstrated experimentally. Although, trapped-ion technology has

been detailed in chapter 3, we would like to facilitate the reader by providing brief

summary of the trapped-ion. The qubit in this technology can be represented by

two internal states of the atomic ion (e.g., 171Yb� ion Olmschenk et al. (2007)), de-

scribed as a two-level spin system, manipulated by focusing adequate laser beams at

the target ion(s). The physical ion qubits can be individually accessible for compu-

tation Knoernschild et al. (2010); Crain et al. (2014b). These qubits can be reliably

initialized to the desired computational state and measured with very high accuracy

using standard techniques. Most importantly, by virtue of the very long coherence

183

time of the ions, qubits can retain their state (memory) for a period of time unpar-

alleled by any other quantum technology. The qubit memory error is modeled as

an exponential decay in its fidelity F � expp�atq, where a (=1{Tcoh) is determined

by the coherence time of the qubit, and t is the time between quantum gates over

which qubit sits idle (no-op). The corruption of the qubit state is modeled using a

modified depolarizing channel Nielsen and Chuang (2000) (equal probability of bit

flip and phase flip). Arbitrary single qubit gates, CNOT, and measurement can be

performed with adequate reliability, making trapped ions a suitable candidate for

large scale universal quantum computer.

A single-qubit quantum gate is accomplished by a simple application of laser

pulse(s) on the qubit in its original location. A two-qubit gate, on the other hand,

requires that both ions are brought in proximity before the laser pulse(s) are applied.

As outlined in the previous chapter, there are two ways to achieve this proximity

using two different types of physical resources: the ballistic shuttling channel (BSC)

and the entanglement link (EL). BSC provides a physical channel through which an

ion can be physically transported from its original location to the target location by

carefully controlling the voltages of the electrodes on the ion trap chip. This chip can

be modeled as a 2-D grid of ion-trap cells as shown in Figure 7.4. The dimensions

of the state of the art ion-trap cell described in Monroe and Kim (2013) fall in the

�mm size range, and we use Tshutt � 1µs as the time it takes for an ion to be shuttled

through a single cell. In the EL case, an EPR pair is established between designated

proxy entangling ions (e-ions) that belong to two independent ion trap chips using

a photonic channel using heralded entanglement generation Duan et al. (2004). The

resulting EPR pair is used by the actual operand ions as a resource to perform the

desired gate via quantum teleportation between two ions that cannot be connected

by BSC Gottesman and Chuang (1999). It should be noted that the generation

time for the EPR pairs is currently a slow process due to technology limitations.

184

Table 7.1: Device Parameters (DPs)

Physical Operation Time(µs) Failure Probability

Single-qubit 1 10�7

Two-qubit (CNOT) 10 10�7

Three-qubit (Toffoli) 100 10�7

Measurement 100 10�7

EPR pair Generation 5000 10�4

This slowness can be compensated for by generating several EPR pairs in parallel

using dedicated qubits and hardware. Table 7.1 summarizes the DPs used for all the

analyses in this paper.

7.3.2 Quantum Architecture Model

Our architecture model is based on MUSIQC hardware described in chapter 3. The

overview of the architecture is given in Figure 7.4. It features a hierarchical con-

struction of larger blocks of qubits (called Segments) from smaller units (called

Tiles), which are connected by an optical switch network. We use the Steane [[7,1,3]]

code Steane (1996) to encode one logical qubit using 7 physical qubits. Additional

(ancilla) qubits are supplied to perform error correction and fault tolerant operations

on the logical qubit. We first construct the first layer (L1) logical qubit block con-

taining 22 physical qubits (7 data and 15 ancilla qubits) using Steane encoding. As

the size of computation grows, multiple layers of encoding are needed to minimize

the impact of increasing noise: with each new layer, the qubit and gate count in-

crease by about a factor of 7. At least two layers of encoding are essential for reliable

execution of sizable benchmark circuits analyzed in our simulations. Therefore, we

cluster 7 L1 blocks to construct the second layer (L2) logical qubit block containing

dedicated qubits to simultaneously carry out error correction operations at L1 level

after every L1 gate. We find that the error correction operation at L2 level occurs

much less frequently, and a dedicated error correcting ancilla resource at L2 is not

185

Figure 7.4: Overview of the reconfigurable quantum computer architecture ana-
lyzed in our performance simulation

necessary for each L2 logical qubit. Therefore, we allocate fewer ancilla qubits at L2

level for error correction, and rely on resource sharing to accomplish fault-tolerance

at L2 level.

At L2 level, we construct four different types of logical qubit blocks using L1 log-

ical blocks, called L2 Tiles, that serve different functions in the computation Metodi

et al. (2005). Each Tile consists of memory cells that provide storage and manip-

ulation of qubits for quantum gates, and BSCs that allow rapid transportation of

ions across the memory cells to support the qubit interaction necessary for multi-

qubit gates. Tiles are specified by their tasks, such as data storage (Data Tile),

state preparation for non-Clifford gates (Ancilla Tile), error correction (EC Tile),

and communication between Segments (Communication Tile). At the highest layer

of hierarchy, various L2 Tiles are assembled to construct two types of Segments:

186

storage Segments (SS) and computational Segments (CS). A segment is the largest

unit that is connected by BSCs, and the connections between Segments are carried

out using optical interfaces. Each segment must contain at least one Communication

Tile, one EC Tile, and several Data Tiles. The SS store qubits when they undergo

no-ops. On the other hand, CS contains qubits necessary to perform the complex

non-Clifford gates, which requires the ability to prepare the magic states and support

the teleportation of data. The magic state is prepared using Ancilla Tiles, which are

specific to CS only. The transportation of data between Segments is achieved by

teleporting data through the EPR link established by the Communication Tiles of

the Segments. A network of optical switches Kim et al. (2003) enables EPR pair

generation between any pair of Segments in the system. To generate an L2 logical

EPR pair, an L2 CNOT consisting of 49 physical CNOT gates is first enacted using

49 physical EPR pairs J. Eisert and Plenio (2000) and then error correction is applied

to improve its fidelity Jiang et al. (2009). The detailed composition of different L2

Tile types is provided in Table7.2. An L2 Tile can contain up to 600 cells arranged in

a 2-D grid, and the time to shuttle logical qubits through the Tile is taken as 60µs.

This architecture scales by adding more qubits to the system in the form of addi-

tional Segments, which demands larger optical switch network, at nominal increase in

the latency overhead of EPR pair generation. The optical switches can be connected

in a tree-like hierarchy such that the height h of the tree scales only logarithmically

with the number of Segments. We restrict the size of the optical switches to 1,000

ports Kim et al. (2003), which can connect up to 20 Segments at the lowest level of

the optical network tree, using 49 optical ports per L2 Communication Tile. This

unique feature enables global connectivity for the entire computer, with the cross-

segment communication time almost independent of distance between Segments. The

communication time scales with the height h of switch network as 2h�1. We found

that h ¤ 3 is sufficient to connect the maximum number of Segments arising in our

187

sizable benchmark circuits, and the corresponding maximum communication time is

5ms�2h�1 � 20ms.

This globally-connected architecture with fast communication channels ensures

rapid access to CS where computational resources for non-Clifford groups are avail-

able. This allows us to designate a finite number of CS in the overall QC to be shared

across the computation. Furthermore, the physical construction of the Data and An-

cilla Tiles are nearly identical (one Ancilla Tile can serve as two Data Tiles, and vice

versa), so the designation between Data and Ancilla Tiles can be dynamically ad-

justed during the course of the computation. The total number of Segments and the

allocation of Data, Ancilla, EC and Communication Tiles per SS and CS are the

architectural parameters of our quantum computer design, denoted by total number

of qubits (NTQ) and Segments (NSeg), number of computational Segments (NCS)

(NCS ¤ NSeg), number of EC Tiles (NEC) and Communication Tiles (NComm) per

segment, and the number of Data (NData) and Ancilla (NAnc) Tiles per CS and SS.

Throughout our simulation analysis we assume NEC = 1 since L2 error-correction

is applied sparsely to Data Tiles, and a single EC Tile can serve several L2 logi-

cal qubits. Hence, a concise description of the architecture contains (1) NCS and

(2) configuration of CS specified by three numbers (NData, NAnc, NComm). For

SS, we replace NAnc with 2�NData. Our analysis framework will involve changing

architectural parameters and studying their impact on resource-performance trade-

offs. The performance metrics consist of execution time Texec and failure probability

Pfail � 1 � Psucc of the circuit, where Psucc is the probability that circuit execution

yields a correct result.

Our system architecture provides several unique features not considered before,

that provide crucial advantage in the resource-performance optimization of the quan-

tum computer design. Firstly, the L2 logical blocks are not identical instantiations of

L1 logical blocks: we utilize several L1 logical blocks to construct L2 Tiles with dif-

188

Table 7.2: Composition of L2 Tile

Tile Type L1 Tiles Physical qubits

Data 7 154
Ancilla 15 330

Error Correction 15 330
Communication 22p� 7� 15q 484� 49

ferent functionalities. This cross-layer optimization allows efficient utilization of the

resources for those tasks (such as error correction at L2), where common resources can

be shared (an example is shown in Figure 4.9). Secondly, our system allows dynamic

re-allocation of computational resources during the computation (Data vs. Ancilla

Tiles) to optimally adapt the architecture to the computational task at hand, anal-

ogous to reconfigurable computing using field-programmable gate arrays (FPGAs)

in modern classical computing. Lastly, utilizing fully distributed resources (such as

CS) is enabled by global connectivity uniquely available in our architecture.

7.4 Tool Description

In this chapter we enhance the version of toolbox used in chapter 6. The newer

version is shown by shaded blocks in Figure 7.5. Again, there are two main compo-

nents: Tile Designer and Performance Analyzer (TDPA) and Architecture Designer

and Performance Analyzer (ADPA). Both components share common critical tasks,

namely mapping, scheduling and error analysis, but the application of these tasks

differs according to their objectives and the constraints.

The TDPA, described in chapter 5 works in the back end of the tool. It sim-

ulates the fault-tolerant construction of the logical qubit operations using specified

DPs. It builds Tiles using Tile Builder by allocating sufficient qubits which can per-

form operations specified in Fault-Tolerant Circuit Generator, and maps qubits in

the circuit to the physical qubits in the Tile using Low Level Mapper. Then, Low

189

Figure 7.5: The shaded components are relevant to the study conducted in this
chapter.

Level Scheduler generates the sequence of quantum gate operations to be executed in

the circuit, that include transversal gates, magic state preparation for non-Clifford

gates, error correction and EPR pair generation. Each logical operation is broken

down into constituent physical operations, whose performances are simulated on the

Tile by adding up the execution time of each gate subject to circuit dependencies

and resource constraints. The Low Level Error Analyzer computes the failure proba-

bility of the specified fault-tolerant quantum gates based on the scheduled circuit, by

counting the number of ways in which physical errors can propagate to cause logical

error in the qubit. The Tile parametrized by DP and the computed performance

metrics is stored in Tile Database. Table 7.3 shows the performance of the unified

L2 Tile (which can act as Data, EC, Ancilla and Communication Tile) computed by

the TDPA for baseline DPs.

190

ADPA whose bulk was developed in chapter 6 is the front end of the tool that

interfaces with the user. It takes architecture parameters specified by the user (e.g.,

NCS, NEC and NComm) as inputs and (1) builds and connects Segments using Tiles

supplied by TDPA to implement benchmark application on hardware configuration,

and (2) evaluates performance of the benchmark for given architecture parameters.

First, Quantum Application Circuit Generator generates the benchmark circuits from

the given algorithms (QCLA, QRCA and AQFT). Then, High Level Mapper maps

logical qubits to Tiles in the Segments, maximizing the locality by analyzing their

connectivity patterns in the circuit, assigning frequently interacting qubits to the

Tiles in the same segment. It generates the initial map of the Data Tiles in the

Segments. Using this map, High Level Scheduler generates the sequence of gates for

the circuit execution by solving the standard resource-constraint scheduling problem

in which resources and constraints are given by architecture parameters. Scheduler

minimizes the execution time by reducing the circuit critical path through maximum

utilization of available resources (Ancilla and Communication Tiles) in the Segments.

The non-Clifford gates require operands to be available in the same CS before being

scheduled. Therefore the operand located in remote Data Tiles needs to be teleported

into the local Data Tile of the CS, while Ancilla Tiles prepare the magic state for

execution. NCS determines how many non-Clifford gates can be scheduled in parallel,

while NComm determines how quickly Tiles can be teleported across the Segments.

Therefore the delays in gate scheduling depend mainly on architecture parameters.

The Scheduler also minimizes Pfail by scheduling error correction on Data Tiles at

regular intervals when they sit idle. Once a complete schedule of logical operations

is obtained, High Level Error Analyzer computes the overall Pfail. Since we cannot

correct for logical failure of the operation, Error Analyzer simply computes
±i�N

i�1 p1�
PLiq, where PLi is the failure probability of the i-th logical gate and N is the total

191

Table 7.3: L2 Tile Performance Numbers. The L1 Error Correction takes 687µs and
fails with probability 1.66� 10�10.

Logical Operation Texecpµsq 1� Psucc

Pauli (X, Z) 1 1.15� 10�18

Hadamard 4 1.15� 10�18

CNOT 10 4.74� 10�18

Transversal Toffoli 100 1.06� 10�17

7-qubit Cat-State prep. 6, 500 3.75� 10�18

Measurement 11, 900 6.14� 10�17

Error Correction 48, 900 4.58� 10�16

State prep. (|0y,|�y) 34, 500 1.6� 10�16

State prep. (T |�) 78, 100 4.23� 10�16

EPR pair generation Tgen � 50, 800 1.08� 10�11

number of logical operations in the circuit. Error Analyzer also tracks the operational

source of each PLi so that with the help of Performance Metrics Decomposer,

1� Psucc can be broken down into the following important noise components:

• Shuttling Noise PSHUT : Errors due to the qubit shuttling through noisy BSC

• Teleportation Noise PTEL: Errors due to the infidelity of an EPR pair for

communication

• Memory Noise PMEM : Errors due to the fidelity degradation of qubit during

no-op

• Gate Noise PGATE: Errors due to the noisy quantum gates and measurements

The Performance Metrics Decomposer not only outputs the constituents 1�Psucc
but also that of Texec by recording various types of latencies which constitute the

critical path of the quantum circuit. It rewrites execution time as sum of latencies

overhead: Texec � TANC �TSHT �TTEL�TSWP �TGATE which are explained below:

• TANC : Latency due to the magic state preparation (fewer NCS or fewer Ancilla

Tiles per segment)

192

Figure 7.6: The running time of ADPA (excluding Visualizer) as a function of
benchmark application size. With full Visualization, the running times increases no
more than seven times.

• TSHT : Latency due to the transportation of operand qubits of the gate, through

BSC inside the segment

• TTEL: Latency due to the logical EPR pair generation for communication

(Fewer NComm)

• TSWP : Latency due to the cross-segment swapping (fewer NComm or large

number of smaller Segments)

• TGATE: Time spent in performing circuit level quantum operations

The details of performance metrics decomposition can be found in section 4.14. Fi-

nally, the Visualizer provides pictorial presentation of circuit scheduling. It allows

us to analyze the utilization of system resources which provide deeper insights into

the efficacy of chosen design. The complete description of the Visualizer is given

in section 4.15. Both Performance Metrics Decomposer and visualizer are used to

explain our results in section 7.5.

193

7.4.1 Tool Validation and Performance

Individual components of the tool can easily be verified for correctness by running

these for known circuits and comparing their output with anticipated results. Over-

all validation can be performed by using visualization and the breakdown of perfor-

mance metrics for different types of benchmarks. Tool efficiency mainly arises from

exploiting the repetitive nature of fault-tolerant procedures and circuit breakdown

of universal quantum gates. Performance of low-level circuit blocks is pre-computed

and stored in the database, and used for simulating the behavior of high-level cir-

cuits. For instance TDPA can be run offline to generate parametrized Tiles, which

are used to efficiently run components of ADPA such as High Level Scheduler, Error

Analyzer and Visualizer. Similarly, the initial mapping of L2 qubits on these Tiles

is generated from a computationally intensive optimization algorithm Juvan and

Mohar (1992), but once generated, can be efficiently processed by the High Level

Scheduler to generate subsequent gate schedules. Thus, we can run High Level Map-

per offline as well. Consequently, the running time of the tool is decided by that

of High level Scheduler and Error Analyzer, which mainly depends on architecture

resources and benchmark size. The results discussed in Section 7.5 show that the per-

formance improvement saturates once resource investment exceeds a certain value,

and the maximum size of the overall system we have to simulate is mainly dictated

by the size of the application circuit.

The Figure 7.6 shows the running time of the tool as function of circuit size. The

data is collected by running the tool on a computer system containing IntelpRqCorepTMq

i3 2.4GHz processor and 2GB RAM. To incorporate the dependency of tool running

time on the available architecture resources, we choose the configuration containing

maximum resources in order to obtain typical worst-case running time of the tool.

In this configuration, we allocate maximum Ancilla and Communication Tiles per

194

Figure 7.7: QCLA execution time (a) scaling under no constraints on physical
resources, Texec and total physical qubits (NTQ) consumed are plotted as a function of
benchmark size, NCS = NSeg.(b) variation with NCS for different NComm, showing
trade-offs between resources and Texec

Data Tile and allow all Segments to act as Computational Segments. Under these

conditions, Fig.7.6 shows that the performance-simulation of 2,048-bit circuit can be

completed in less than 1.5 minutes. Thanks to the efficiency in the performance sim-

ulation, our tool can explore a large quantum computer design space in a reasonable

amount of time.

7.5 Simulation Results

We first analyze the relationship between resources (qubits) and performance as

a function of benchmark size for scalability. We consider the system architecture

resource-performance scalable (RPS) if the increase in resources necessary to achieve

the expected behavior of the performance (execution time) grows linearly with the

size of the benchmark, while maintaining Psucc � Op1q. In the absence of hardware

resource constraints, the expected execution time for the QRCA and AQFT grows

linearly, while that for QCLA grows logarithmically, as the problem size grows. The

execution time could grow much more quickly in the presence of resource constraints,

195

Figure 7.8: QRCA execution time (a) scaling under no constraints on physical
resources, Texec and total physical qubits (NTQ) consumed are plotted as a function of
benchmark size, NCS = NSeg.(b) variation with NCS for different NComm, showing
trade-offs between resources and Texec

in which case the system is not considered RPS.

In the first step we present a set of simulations to quantify the RPS of the

proposed MUSIQC architecture for benchmark circuits and analyze the constituents

of performance metrics. In the next step, we study the impact of limited resources

and architecture parameters on the performance of fixed size benchmarks. This will

provide guidelines to find an optimal design under limited resources. In the last set,

optimum designs are obtained under resource constraints, for effectively executing

the benchmark circuits.

7.5.1 Resource-Performance Scalability

Figure 7.7(a), 7.8(a) and 7.9(a) show Texec and the total number of physical qubits

(NTQ) plotted against benchmark size for QCLA, QRCA and AQFT respectively,

and corresponding Pfail values are shown in Table 7.4. We consider two adder con-

figurations (NData, NAnc, NComm)=(3,4,1) and (12,4,3), and AQFT configurations

(1,4,1) and (1,8,1). When benchmark size increases by factor of x, we expect Pfail

to increase by at least the same amount (total gate operations increase x-fold) while

196

Figure 7.9: AQFT execution time (a) scaling under no constraints on physical
resources, Texec and total physical qubits (NTQ) consumed are plotted as a function of
benchmark size, NCS = NSeg.(b) variation with NCS for different NComm, showing
trade-offs between resources and Texec

execution time scales as the depth of the circuit. Indeed Table 7.4 confirms this trend

for all benchmarks. On the other hand, as problem size doubles, Texec for QRCA and

AQFT increases 2 fold [linear curve for Texec in Figure 7.8(a) and 7.9(a)]. For QCLA,

Texec increases roughly by a constant amount [logarithmic curve in Figure 7.7(a)] as

expected. Since this performance is achieved for the same increase in total qubits as

that of the problem size, our architecture shows RPS.

By demonstrating RPS for two different architecture configurations with NCS

= NSeg, we have presented varying performance levels. The impact of these con-

figurations can be understood by analyzing the breakdown of performance metrics

in Table 7.5. The significant contribution of TANC for adder configuration (12,4,3)

and AQFT configuration (1,4,1), shows that magic state preparation is the domi-

nant component of Texec due to insufficient Ancilla Tiles in CS. This overhead can be

substantially reduced either by increasing NAnc (configuration (1,8,1) for AQFT) or

by increasing the ratio of NData to NAnc (configuration (3,4,1) for adders). How-

ever, the configuration (3,4,1) exposes EPR pair generation overhead captured by

197

Table 7.4: Failure Probability Pfail for corresponding data points of in Fig-
ure 7.7(a),7.8(a),7.9(a)

Table 7.5: The breakdown of Performance metrics: Texec of Fig-
ure 7.7(a),7.8(a),7.9(a) and Pfail of Table 7.4 for 1,024-bit benchmark. NCS
= NSeg

TTEL and TSWP . This is due to the large number of cross-segment CNOT and

operand swapping required to bring all Toffoli operands to the same segment. Hence

for adders, frequent cross-segment communication explains the higher component of

teleportation error (PTEL) in the failure probability. For AQFT, configuration (1,8,1)

highlights shuttling overhead TSHT as T gates comprise bulk of the operations. The

scheduling of T gates in the long approximation sequence leads to a large number

198

Table 7.6: Optimal Architecture Configurations for the Fig.7.11

of interactions between Data and Ancilla Tiles through BSC in the segment. This

intensive localized communication makes (PSHUT) the only noticeable component of

Pfail. In conclusion, we have shown RPS of the architecture when performance is

bottlenecked by different hardware constraints for various benchmarks. This shows

that the architecture efficiently utilizes additional resources to achieve adequate per-

formance while running larger size circuits.

7.5.2 Resource-Performance Trade-offs

Now that we have quantified RPS, we examine the impact of reduced resources on

the performance by constraining architecture parameters. We fix the size of the

benchmarks to 1,024 bits and vary NComm, NCS and the configuration to observe

199

Figure 7.10: (LEFT) Sample QCLA circuit (RIGHT) Visual representation of
latency overhead for Computational Segments of 1024-bit QCLA architecture with
(a) configuration (3,4,4), NCS = NSeg = 1362, (b) configuration (3,4,1), NCS =
NSeg = 1362 and (c) configuration (3,4,1), NCS = 341

changes in Texec. Fig. 7.9(b) shows that for AQFT, (1) Texec does not change with

NComm since it is not constricted by cross-segment communication resources, and

(2) Texec decreases sharply by increasing NCS and becomes flat when NCS ¥ 16,

mainly due to insufficient parallelism in the circuit. The QRCA curves in Fig.7.8(b)

remain unchanged as NCS increases until NCS approaches NSeg where Texec shows

noticeable decline. However, the overall decrease remains within a factor of only

about 3, due to serial gate dependency. In these benchmarks, by comparing curves

for different configurations, (12,4,1) vs. (3,4,1) for QRCA and (1,8,x) vs (4,8,x) for

200

AQFT, we find that clustering more Data Tiles in the CS generally reduces Texec due

to fewer delays in cross-Segment operand swapping.

Figure 7.7(b) shows that Texec of QCLA decreases exponentially with NCS. In con-

trast to QRCA, the large number of concurrently executable Toffoli gates in QCLA

demands much higher NCS. Furthermore, Texec also decreases with higher NComm

as the large number of cross-segment teleportations consume more communication

resources. Figure 7.10(a)-(c) provide pictorial description of these trends. The visu-

alization shows different types of latencies due to resource-constraint scheduling for

each CS. The horizontal lines represent magic state preparation, while non-horizontal

lines indicate cross-segment teleportation. The corresponding latencies can be de-

rived by projecting these lines on the horizontal axis (execution time). When suffi-

cient NComm resources are provided as in Figure 7.10(a), there is little delay and

the circuit execution is fast. However, when NComm is reduced from 4 to 1 as in

Figure 7.10(b) teleportation latency caused a 4.5-fold increase in Texec. The same

amount of increase occurs in Fig.7.10(c) when NCS is reduced from 1362 to 341.

Long horizontal lines indicate delays due to fewer Ancilla Tiles for Toffoli magic

state preparation, which increases the overall Texec to over 30 sec.

By comparing Figure 7.7,7.8,7.9 it is easy to conclude that QCLA is the most re-

source hungry benchmark while AQFT is the least. We also note that Pfail values do

not tend to improve substantially when we provide more architecture resources. In

fact, one can show that a substantial decrease in Pfail can only be achieved by improv-

ing the relevant DP that contributes to the dominant noise sources. These sources are

correctly identifiable once we have invested sufficient resources for scheduling error-

correction and chosen optimal architecture configuration which minimizes Texec. In

the following subsection we concentrate on Texec only and return to optimizing Pfail

in the last subsection of the simulation results.

201

Figure 7.11: Texec for optimal architectures plotted against benchmark size for
different segment sizes. The Resource budget is 1.5 million physical qubits. Optimal
architecture configurations are shown in Table 7.6.

7.5.3 Performance Scaling under Limited Resources

The increase in Texec due to constrained resources can be compensated to some extent

by designing an optimal architecture around the root cause that limits the perfor-

mance. As shown earlier, the choice of optimal architecture configuration varies

across benchmarks, since both performance bottlenecks and resource utilization de-

pend strongly on the structure of the application circuit. By plotting optimized

Texec against benchmark size using a fixed resource budget, we can determine (1)

the largest circuit size which can be scheduled and executed, (2) the trend for opti-

mal performance as a function of problem size, and (3) the choice of configuration

which generally obtains optimal performance for specified benchmark circuit. To

adequately obtain these insights, we consider an example where we restrict our total

qubit resource (NTQ) to 1.5 million physical qubits. We also restrict the number of

physical qubits contained in the segment; small segment (SSeg) will contain up to

5,000 physical qubits, while large segment (LSeg) will contain up to 10,000 physical

202

qubits. For each benchmark we obtain two plots, one for each segment size.

Figure 7.11 shows Texec variation of running the benchmark circuits on this sys-

tem, as a function of problem size. The Texec for each data point was minimized

through optimal design selection by tool-assisted search through all feasible com-

binations of architecture configurations and NCS parameters. These optimized ar-

chitecture designs are shown in Table 7.6. It is interesting to compare Ancilla and

Communication Tiles invested in the optimal designs. For example, the configura-

tions (19,12,6) and (8,8,2) for QRCA contains a higher Ancilla-to-Communication

Tiles ratio, as compared to (30,8,5) and (5,4,5) for QCLA. This indicates that in

contrast to the QRCA case, both Ancilla and Communication Tiles are equally vi-

tal for the QCLA performance. The AQFT architecture (1,8,1) with sufficient NCS

is a natural optimal choice, since the only relevant resource for this circuit is the

large number of Ancilla Tiles to schedule the long sequence of T gates necessary to

approximate the small-angle rotations.

We observe that regardless of the segment size, Texec of the least resource de-

manding benchmark of the three, namely AQFT, scales perfectly with problem size

at least up to 4,096 bits. This is due to the fact that optimal configuration for

AQFT can easily be met within the resource budget. However, in the case of adders,

segment size is crucial for an optimal design. Larger Segments open greater search

space for optimal design selection for resource intensive circuits. For both QCLA

and QRCA, Texec scales more adequately for larger Segments. For smaller Segments,

QCLA performance shows significant degradation as the problem size begins to in-

crease. The logarithmic depth of the most resource consuming benchmark (QCLA)

is restricted to 256-bit and 1,024-bit for SSeg and LSeg, respectively. After that,

Texec shows a sudden rise with problem size and even surpasses the corresponding

QRCA performance, as lack of resources leads to substantial delays in executing the

parallel gate operations that enable the logarithmic-depth adder. The largest adder

203

benchmark that can be scheduled on this hardware is the 2,048-bit adder, where

QRCA outperforms QCLA by factor of 4.

We have seen how limited resources and problem size impact the choice of adders

for quantum arithmetic. Our analysis shows that in a 1.5 million-qubit computer,

QCLA is a better adder choice up to 1,024-bits, but larger problems do not fit into

the hardware. We can still execute the circuit using QRCA for up to 2,048-bits,

although the performance will be substantially slower with this circuit choice.

7.5.4 Design Optimization by Tuning Device Parameters

Reducing the execution time

Quantum adders are used to construct modular exponentiation which comprises the

bulk of Shor’s integer factorization algorithm. However, in order to demonstrate

practical speedup offered by the quantum computer, we need to show that Shor’s

algorithm in ‘reasonable time’, can factor integers larger than those factored by

conventional computers. The largest reported integer sizes to 768-bit and consumes

six months for its factorization Kleinjung et al. (2010). It has been estimated that

compared to 768-bit, factorizing 1,024-bit number is 1,000 times harder and larger

integers are unlikely to be factored in the near future Kleinjung et al. (2010). Based

on these reasons, our criterion of evaluating the practical computational efficiency of

quantum computer requires that integers larger than 768-bit can be factored in less

than five months.

The total execution time of Shor’s algorithm is heavily dominated by the modular

exponentiation circuit. To factor integers of size in excess of 512 bits, we require

millions of calls to the adders depending upon the size of the problem Van Meter and

Itoh (2005). Although these adders can be connected in several ways depending upon

resource budget, we restrict to the sequential execution of adders for our analysis.

Hence, in order to run Shor’s algorithm in less than five months, we can upper bound

204

the time taken by each adder call depending upon the size of the integer. This bound

is shown as execution time threshold represented by dotted line in Figure 7.11. The

execution time data points falling on or below this curve show the corresponding

adder designs which can be used to construct modular exponentiation part of Shor’s

algorithm circuit to be scheduled in less than five months.

The Figure 7.11 shows that within 1.5 million qubits 1,024-bit number can be

factored within specified time. However, the solution of the 2,048-bit problem cannot

meet the time constraint. This is because Texec of 2,048-bit QRCA and QCLA (58.5s

and 270s respectively) is significantly higher than the threshold execution time of

0.8s. We first attempt to reduce Texec by increasing our resource budget. With 90%

more qubits, the optimal architecture configuration for QCLA changes from (48,4,2),

NCS = 25 to (30,8,5), NCS = 273 which shows nearly 100x decrease in Texec (from

270s to 2.76s). This is remarkably higher than the QRCA case which undergoes

nominal reduction: from 58.5s to 50.1s. At this point QCLA seems to be the only

choice which can meet the threshold execution time criterion if Texec can be further

reduced by factor of 4. Unfortunately, we find that further increase in resources (and

new architecture configuration) failed to provide meaningful reduction in Texec.

The failure to achieve performance improvement through additional resource

highlights the role of DPs in the design space. The set of DPs which affect the

speed of quantum circuit include the latency of physical operations. We find that

when physical gate (and measurement) time and qubit shuttling latency are reduced

by 90% the execution time declines to 0.68s 0.8s, meeting our time constraints.

The total execution time for 2,048-bit integer factorization can be approximated as

the sum of time spent in 16 million calls to the adder (0.68s� 16� 106 � 128 days)

and Texec of single run of 4,096-bit AQFT (less than a day). Therefore the proposed

quantum computer design can factor 2,048-bit number in less than five months.

205

Reducing the failure probability

In order to ensure that the entire Shor’s algorithm is reliably executed, we require sum

of failure probability of 2,048-bit modular exponentiation circuit and 4,096-bit AQFT

to be sufficiently low. The Table 7.4 shows already adequate � Op10�4q � Op10�3q
Pfail of AQFT when qubit shuttling latency (Tshutt) was assigned baseline value of

1µs. When Tshutt was reduced to 0.1µs in our current design to lower the execution

time of the adder, the Pfail of 4,096-bit AQFT falls well below 10�4. Therefore,

the goal of reducing the failure probability of full Shor’s algorithm translates into

curtailing the failure probability of modular exponentiation. This in turns requires

the Pfail of each adder call to less than certain threshold value so that overall fail-

ure probability falls meet the design criterion. The 2,048-bit integer factorization

consumes around 16 million calls to the adder, therefore we require that for each

adder execution, Pfail 6.67 � 10�8. The Pfail for the design optimized for Texec

is (30,8,5), NCS = 273 is 2.77� 10�7.

The lower the failure probability, we can either add one more layer of encoding or

reduce the noise level in the physical device components. Adding a layer of encoding

will entail at least an order of magnitude increase in required resources which enor-

mously expands the scale of integration. In addition, the Texec is also significantly

inflated (Table 7.3 shows that L2 error correction takes 70x more time than L1 error-

correction). Therefore, increasing the layer of encoding does not yield simultaneous

reduction in both Texec and failure Pfail. On the other hand by reducing the noise

level in physical device components, we can decrease Pfail without compromising on

Texec. We exploit the dependence of Pfail on the fidelity of certain physical operation

and highlight their role in designing fault-tolerant quantum computer.

The Figure 7.12 shows that original Pfail of QCLA can be reduced to 2.37� 10�9

by improving the fidelity of EPR pair generation. The insight into the choice of this

206

parameter was obtained by analyzing the breakdown of failure probability. From

Figure 7.12(a) it is clear that the contribution of the Teleportation Noise to the

initial Pfail is more than 99%. The device parameter which directly affects the

Teleportation Noise, is the infidelity of EPR pair for cross-Segment communication.

By reducing the infidelity from 10�4 to 10�5, we gain more than 100x reduction in

the failure probability in Figure 7.12(b). It is worth comparing this result with that

in chapter 6 where memory coherence time improvement gave us 1000x decrease

in the failure probability upfront. In that analysis, the large part of that Memory

Noise came from exponential degradation in physical qubit fidelity quickly leading

to large Memory Noise in the absence of L2 error correction steps. This is because

L2 error-correction is a time intensive operation which may not be always inserted

into the time span over which logical underwent no-op. In this study we supplied

dedicated resources for L1 error-correction instead of L2 based on the fact that L1

execution time was 75x shorter than that of L2. Therefore, we were able to prevent

this exponential decay by fitting repeated L1 error correction during no-op whose

time span was too short to allow for L2 error correction. According to Figure 1.2 the

introduction of L1 error-correction significantly decelerates the fall in fidelity which

eliminates Memory Noise as the primary performance bottleneck in Figure 7.12(a).

However, once Teleportation Noise is removed in Figure 7.12(b), the Memory Noise

resurfaces along with Gate Noise and further decrease in Pfail can be obtained by

improving memory coherence time or physical gate fidelity or both.

Conclusively, by tuning the DPs we can lower the failure probability to match

our design requirement: Pfail of QCLA becomes 2.37 � 10�9 6.67 � 10�8. This

gives overall failure probability of modular exponentiation around 3.8%. The Pfail

of 4,096-bit AQFT is negligible compared to this value, therefore, the overall failure

probability does not exceed 4%. Hence we have shown that the optimal adder archi-

tecture with the appropriately tuned DPs can be used to construct reliable quantum

207

Figure 7.12: The breakdown and reduction in the failure probability of 2,048-bit
QCLA For the configuration: (30,8,5), NCS = 273 with Tshutt � 1µs and the baseline
physical measurement and multi-qubit gate times reduced by 90%. The original
failure probability shown in (a) is reduced from 2.77�10�7 to 2.37�10�9 in (b) only
by decreasing the infidelity of the EPR pair for cross-Segment communication.

computer to execute 2,048-bit Shor’s algorithm.

7.6 Conclusion

In this chapter, we presented a scheme to design Shor’s algorithm using complete

performance simulation toolset capable of designing a resource efficient, scalable

quantum computer. Our tool was capable of analyzing the performance metrics

of a flexible, reconfigurable model, and deepened our insights on the architecture

design by providing a comprehensive breakdown of performance metrics and visu-

alization of resource utilization. Using this tool, we were able to quantify, for the

first time, the resource-performance scalability of a proposed architecture, featuring

unique properties such as (1) dynamic resource allocation, where the functional role

of physical qubit blocks could be re-assigned based on the demands of the circuit be-

ing executed, (2) cross-layer optimization, where qubit resources providing L2-level

functions were shared throughout the system, (3) resource-constrained hardware per-

formance, where optimal architectural design for resource allocation was considered

as a function of the problem size, and (4) complete visualization of the resource uti-

208

lization that provided means to validate the optimality of the performance, (5) over

a hardware architecture that provided global connectivity among all the qubits in

the computer system.

Moreover, due to the macro-modeling approach used in our tool, we achieved

highly efficient runtime for the performance simulation, which allowed us to carry

out an exhaustive search for an optimized system design under given resource con-

straints, over a range of architecture configurations and benchmark circuits. Our

benchmarks included crucial building blocks of Shor’s algorithm such as the approx-

imate quantum Fourier transform and two types of quantum adders. We found that

the optimal designs varied across the benchmark applications depending on the types

of gates used, the depth and parallelism of circuit structure, and resource budget.

By comparing their performance across these benchmark circuits, we presented a

concrete quantum computer design capable of executing 2,048-bit Shor’s algorithm

in less than five months.

209

8

Conclusion and Future Work

8.1 Summary of Important Results

The thesis describes a new performance simulation tool to study trapped-ion based

quantum architectures and the role of physical hardware components in designing

large-scale quantum computer. The architecture was modeled by set of parameters

describing connectivity and allocation of computational qubit resources. The physi-

cal characteristics of hardware were incorporated by device parameters indicating the

quality of hardware components. The basic tool flow derived from standard classical

CAD literature and prior work, was integrated with novel features including detailed

breakdown of performance metrics, visualization of resource utilization, flexibility to

change design parameters and faster simulations. Using this tool a vast architecture-

device parametric design space was efficiently explored, labeled and analyzed and

the results provided vital guidelines for the experimentalists and system architects.

For the convenience of the reader, these results are summarized as follows:

1. The design space of quantum computer is spanned by the computational re-

sources(e.g., qubits), device and architecture parameters. The performance

210

can be quantified as execution time and the failure probability (Pfail) of the

quantum application circuit (see chapter 5 for details).

2. To highlight the role of architecture in the design space, we can fix values for

device parameters based on foreseeable advancement in the technology and

study the dependence of performance on the resource allocation for various

operational tasks in the quantum computer. This type of study generates

novel ideas in the field of quantum computer architecture (see chapter 5,6 for

details).

3. To highlight the role of device parameter in the design space, we can satu-

rate performance gain by providing enough resources. At this point further

enhancement in the performance can be achieved only by tuning the device pa-

rameters. This type of study targets experimental efforts and identifies device

components which are crucial of the performance of quantum computer (see

chapter 6 for details).

4. The total execution time of quantum application directly depends on the la-

tency of physical quantum operations. However for resource intensive applica-

tion circuits, the decrease in execution time, benefits from increased number of

qubits, far greater than from the reduction in the physical operations latencies

(see chapter 7 for details).

5. The design space of fully error-corrected (dedicated qubits for error-correction

after each logical gate) quantum circuit can be partitioned into two main

regimes. In Shuttling-Ancilla regime, execution time is limited by ancilla qubits

required for fault-tolerant non-Clifford group gates, whereas, in case of Tele-

portation regime, it is limited by the qubits dedicated for the long-distance

communication (see chapter 6 for details).

211

6. The overall failure probability of quantum circuit is dictated by the qubit co-

herence time and the fidelity of long-distance communication channel when

gate failure probability falls significantly below threshold of the chosen error-

correcting code (see chapter 6 for details).

7. When fidelity of quantum gate is high (i.e. Pfail � 10�7), the frequency of

error-correction across layers of concatenation chooses between (1) memory

coherence time and the (2) fidelity of long-distance communication channel to

determine the device parameter limiting the overall failure probability of the

quantum circuit (compare the architecture assumptions and results of chapter 6

and chapter 7 for details).

8. The performance degradation due to slow and low fidelity communication chan-

nels can be adequately neutralized by the reliable qubits and high fidelity quan-

tum gates at the cost of modest increase in resources (see chapter 6 for details).

When communication among qubits ceases to be the performance bottleneck,

we can define quantum computer architecture which can be efficiently scaled

to schedule large size quantum application circuits (see chapter 7 for details).

9. A scalable architecture of the quantum computer shows ‘performance-scalability’

which means that it maintains desired level of performance with the increasing

size of the application circuit and proportional raise in the resource supply (see

chapter 7 for details).

10. With limited resources, the performance-scalability is achieved when resource

allocation matches the computational workload of the application circuit (see

chapter 7 for details).

11. A scalable trapped-ion quantum computer can efficiently factor integers of size

in excess of 768-bits. By investing three million qubits, 2,048-bit number can

212

be factored in less than five months if physical gate failure probability is 10�7

or less (see chapter 7 for details).

8.2 Directions for Future Research

Although, the vast landscape of design variables makes analysis problem challeng-

ing, it also opens new avenues for routing interesting research questions. The work

presented in the thesis is a stepping stone to the advanced modeling, computer-aided

design and performance simulation framework to study quantum computer architec-

tures. In this chapter we outline possible directions along which presented work can

be extended to increase our knowledge about designing quantum computers. Nat-

urally, these directions would entail enhancement to the capabilities of our existing

tool. Most of these additions can be accomplished by integrating newer software

modules with the predefined comprehensive framework. Therefore, the rest of the

chapter is organized in sections, each detailing new problems which can be studied

with the specific enhancement of the toolbox.

8.2.1 Introducing Heuristics in Searching Design Space

In chapter 7 exhaustive search was used to find optimal architecture within fixed

budget. Based on the state-of-art hardware constraints in the ion trap, the restric-

tion on the total number of qubits inside the trapped-ion chip, pruned non-trivial

portion of the search space. In general, the architecture space can grow significantly

larger with the advancement in qubit integration technology. In this case, expensive

exhaustive search needs to be substituted by adequate heuristics which can efficiently

guide us to the optimal or near-optimal design. These valuable heuristics can be de-

rived if sufficient insights into the resource-performance trade-offs can be obtained

during the searching process. Fortunately, the performance metrics decomposition

feature of our tool can reveal the contribution of specific architecture resources in

213

defining the performance of design under analysis. By utilizing this feature and

the leveraging wealth of Artificial Intelligence literature on designing search algo-

rithm, interesting heuristics an be proposed different to search landscapes for range

of quantum architectures.

8.2.2 Mapping and Scheduling Algorithms

The basic mapping and scheduling algorithm (MSA) reported in the thesis describe a

way to performance-simulate quantum circuit on the hardware within its constraints.

The last chapter testifies the adequacy of these algorithms by preserving the general

performance-scaling properties of applications circuits. Among all the tested bench-

marks, the QCLA posed the stringiest challenge since both mapping and scheduling

techniques needed to optimally avail architecture resources in order to keep execution

time growing ‘close to’ logarithmically as a function of circuit size (see Figure 7.7 for

details). The results in section 7.5.1 show that our chosen MSA produced desired

performance behavior within the specified resource budget for the given problem

size. Therefore in the presence of limited resources for computation, performance

degradation can be attributed to the said constraint with far greater confidence than

to the possible sub-optimality of MSA.

The thesis explored architectures role in high performance quantum computation

using one set of mapping and scheduling scheme. An interesting direction for further

research is to experiment with other strategies of laying out quantum circuit on the

hardware. As noted in chapter 4, many of these strategies for the quantum design

can be borrowed from the literature on classical CAD algorithms. One important

advantage of using multiple schemes is the freedom to match MSA with the needs

of given quantum application circuit and chosen architecture. Moreover, within

the framework of selected MSA, there are several places where the management of

the pool of resource can benefit from newer schemes. For instance in the selection

214

of ancilla set for the magic state preparation, error correction and communication

qubits for EPR pair generation. Even though the greedy scheduling approach for

the resource allocation generally worked satisfactorily for our simulations, there is

an opportunity to introduce smarter scheduling schemes to improve the performance

of quantum application using CAD techniques.

8.2.3 Support for Other Error Models

The presented simulations assumed depolarizing channel error model wherein a qubit

is infected by equally probabilistic X, Y and Z errors. However, it has been observed

that in a quantum hardware, Z errors can occur with higher probability than the

X errors Evans et al. (2007). Moreover, there are other error models described by

varying the contribution the of corresponding error probabilities Nielsen and Chuang

(2000). For example, Amplitude or Phase Damping Channels are used to model

decoherence in variety of quantum communication systems Preskill (1998a) using

unequal probabilities of bit and phase flips. In the absence of fully integrated sizable

quantum system, it is difficult to judge which error channel presents an adequate

picture of decoherence for given technology. Moreover, the amount of correlation

between the occurrence of these error is another open question. Nevertheless, it is

widely believed that under the Markovian assumption about the noise, the occurrence

of errors can be assumed independent in the quantum systems, meaning that error

on a physical qubit is unrelated to the error in the other qubit. Therefore based upon

this assumption and the simplicity of analysis, most error correcting codes assume

that underlying decoherence process follows independent error model.

In strict sense, errors mutually correlate in space or time Alicki et al. (2006). The

challenges of dealing with the correlated noise model has been studied Ben-Aroya and

Ta-Shma (2011); Clemens et al. (2004) and schemes have been proposed to extend

the capacity of existing error correcting codes to deal with correlation noise Lu and

215

Marinescu (2007); Chiribella et al. (2011). In this model, the probability of multiple

bit or phase flips can be assumed significantly higher than having single error in the

logical qubit. In Appendix A, we show that using standard distance-3 Steane [[7,1,3]]

and Bacon-Shor [[9,1,3]] code Bacon (2006), it is possible to correct for two X, Y

or Z errors, the property that perfectly matches with the need of correlated error

model. Similar properties of other codes can be explored in order to obtain deeper

understanding of the quantum codes in the context of correlated noise. Meanwhile

a tool capable of handling multiple types error models will be highly beneficial to

so that the failure probability of quantum algorithm can be computed under more

realistic behavior of the hardware.

8.2.4 Improving Models of Physical Device Components

The reliability of the performance-simulation of the quantum mechanical system can

be increased if the model of component devices can be enhanced with additional

meaningful parameters. The current assumptions about the physical properties of

these components can be revised to incorporate complicated issues arising in the real

hardware. Some of these intricacies can be handled easily by simply adjusting the

values of the parameters. For example, the impact of quantum control protocols on

the performance can be subsumed in the overall increase in the gate execution time

and the decrease in its failure probability. On the other hands, certain engineering

difficulties may need non-trivial modeling techniques. For example, the diffraction

of laser beam can inadvertently change the state of the unintended ions located in

the vicinity of the target ion. This leads to the non-negligible cross-talk among

the ions during the scheduling of quantum gates Crain et al. (2014a). Similarly,

neutral atoms quantum system can suffer from physical loss of the qubit Saffman

and Walker (2005) due to laser heating. Finally, as more qubits are integrated into

the system, the engineering parameters describing the complexity of classical control

216

system also require careful consideration in the performance evaluation framework.

Hence, by upgrading the models of component devices, we can enhance our insights

about crucial challenges in designing large scale quantum computer.

8.2.5 Support for Multiple Quantum Technologies

Quantum hardware other than trapped-ion offer alternative device technologies to

implement quantum computer. These include Nuclear Magnetic Resonance (NMR)

Negrevergne et al. (2006), Single photon Knill et al. (2001), Quantum dots Hanson

et al. (2007), superconductors Nakamura et al. (1999) and others. Each technol-

ogy brings unique realization of qubits and gates as well as their hardware level

connectivity relevant physical attributes such as speed and fidelity of operation, im-

munity to decoherence and feasibility (or in-feasibility) of large scale computation.

For example, superconductors feature faster operations but cannot be as easily phys-

ically transported as those of the ion qubits. Similarly, photons qubits act as great

communication agent but suffer from significantly higher decoherence than other

technologies. The quantum dots can benefit from existing fabrication techniques,

however, the two-qubit gates can be severely constrained by the distance between

operand qubits. Therefore, the accurate modeling of different types of quantum

hardware and exploring architecture support within, are both challenging and inter-

esting direction for the future research in the performance simulation. A versatile

tool capable of comparing various quantum technologies can be used to determine

optimal hardware for selected application.

8.2.6 Support for Multiple Error-correcting Codes

We encoded our benchmark application circuits by Steane code for its marvelous

fault-tolerance properties. Using this code, our analysis gave us an estimate of re-

source overhead to reliably execute the circuits of practically interesting size. In

217

general, this overhead strongly depends on the threshold of chosen error-correcting

code; higher threshold can lower the required amount of resource investment. In the

literature we find that several other codes have been proposed with different thresh-

old values Aliferis et al. (2005) with their construction detailed in Lidar and Brun

(2013). However, one standout class of code which has received bulk of attention for

its extremely high threshold property, is ‘topological quantum code’ Kitaev (2003).

The topological error correction have been shown to achieve very high thresh-

old value, at least 1% Fowler et al. (2009) which is about 10-1,000 times higher

than known concatenated codes. Therefore one can expect that considerably fewer

resources will be required when application circuit relies on topological code. How-

ever, in the presence of realistic hardware constraints, scheduling very large number

of simultaneous nearest-neighbor parity check operation for error detection is likely

to pose major design challenge. The choice of suitable error correcting code for given

quantum hardware and chosen application remains an interesting open problem.

Hence, the additional capability of analyzing other quantum codes (e.g., topological

code) can serve as valuable extension to our tool. This will add another insightful

dimension into the quantum computer design space.

8.3 Summary and Final Word

In this final chapter, we summarized our main results and proposed several extensions

to our current tool which can explore avenues of future research. We explained

that embarking on these new journeys of investigation would increase our collective

vision of steering the quantum computing research in the productive direction. We

conclude on an optimistic note that the toolbox contribution, the results and the

findings presented in the thesis will bring the attention of unfamiliar community to

the exciting field of quantum computing.

218

Appendix A

Bimodal Error Correction

We identify that certain distance-3 quantum error correcting codes [[3, 1, 3]], [[7, 1,

3]] and [[9, 1, 3]] can correct arbitrary double errors (XiXj, YiYj, ZiZj) even though

they were initially designed for single error correction. In case of double error model,

an event containing two identical errors on two different qubits of the logical qubit

block, maps to same syndrome which apparently contradicts standard condition for

quantum error correction. However we show that as long as the product of any two

elements of the set acts trivially on the code space, perfect error correction is still

possible. This result can be applied to a specific correlated error model Chiribella

et al. (2011) where an error in a qubit is somehow linked with the occurrence of same

error in the nearby qubit (which belongs to the same logical qubit block) resulting in

double error event in the block of encoded qubit. Moreover, since [[7,1,3]] and [[9,1,3]]

can always correct arbitrary single qubit errors, their added capacity of correcting

arbitrary double error can be used to show the existence of quantum error correcting

codes which can be switched between two modes of error correction (single or double).

In this Appendix we first describe the theory behind standard error correction and

219

then extend this idea to double error correction using the [[3, 1, 3]], [[7, 1, 3]] and

[[9, 1, 3]] codes.

A.1 Condition for Quantum Error Correction

The necessary and sufficient condition for quantum error correction is follows:

xi|EaE:
b |jy � Cabδij (A.1)

Where i and j are code basis (or codewords), Ea and Eb are correctable error op-

erators. C should be hermitian matrix with entries Cab and δij � 1 if i � j and

0 otherwise. This condition says that given quantum error correcting code with

codeword i, j can correct set of error Ei when either

1. Error Ea acting on codeword |iy should not produce a state which overlaps

with one produced when different error Eb acts on codeword |jy.

or

2. For codeword |iy, the overlap between state produced by Error Ea and Eb is

same as that for codeword |jy for same errors.

While condition (1) holds only for non-degenerate codes, condition (2) can extend

the error correction condition to degenerate codes. For bimodal error correction, we

rely on the special symmetry of the chosen error correcting codes which indirectly

satisfies eq.A.1.

A.2 Double Error Correction

Double error can be described by the map εpρq which transforms initial logical qubit

state ρ as follows:

220

Table A.1: Double error syndromes for [[3,1,3]] bit flip code

Syndrome
Double error type Error Z1Z2 Z2Z3

X1X2 YES +1 -1
X2X3 YES -1 +1
X1X3 YES -1 -1
@i,jZiZj NO +1 +1

εpρq � pρ� °
i�1,2,..,n,j¡i

ppi,jXXiXjρXjXi � pi,jY YiYjρYjYi � pi,jZ ZiZjρZjZiq

where p � 1 � °
i�1,2,..,n,j¡i

ppi,jX � pi,jY � pi,jZ q is the probability that code state ρ was

unchanged while with probabilities pi,jX , pi,jY and pi,jZ it will undergo double X, Y or

Z error respectively. Since Y error can be broken down into X and Z errors on

the same qubit, therefore it is sufficient to describe concrete procedures for arbitrary

double X and double Z error corrections only.

A.2.1 The [[3,1,3]] code

The [[3,1,3]] code can correct for either single bit flip or single phase flip error. We

show that it can also correct for arbitrary double error. To show this property, we

assume [[3,1,3]] bit flip code which has following stabilizers:

1. Z1Z2

2. Z2Z3

Table A.1 shows that each double bit flip error XiXj gives distinct syndrome and

therefore condition (A.1) is always satisfied. Double ZiZj error is always a stabilizer

of the state so it acts trivially on the code space. Thus [[3,1,3]] code is a bimodal

error correcting code.

221

Table A.2: Double X error syndromes for [[7,1,3]] code

Syndrome
Double error type S1

z S2
z S3

z Six Product of double error pairs
(X1X2),(X5X6),(X4X7) -1 -1 +1 +1 S1

xS
2
x, S

3
x, S

1
xS

2
xS

3
x

(X1X5),(X2X6),(X3X7) +1 +1 -1 +1 S1
xS

2
x, S

1
x, S

2
x

(X1X3),(X5X7),(X4X6) +1 -1 +1 +1 S1
x, S

1
xS

3
x, S

3
x

(X1X4),(X3X6),(X2X7) -1 +1 -1 +1 S1
xS

3
x, S

2
x, S

1
x, S

2
x

(X1X6),(X3X4),(X2X5) -1 -1 -1 +1 S1
xS

3
x, S

2
xS

3
x, S

1
xS

2
x

(X1X7),(X2X4),(X3X5) +1 -1 -1 +1 S1
xS

2
xS

3
x, S

1
x, S

2
xS

3
x

(X2X3),(X4X5),(X6X7) -1 +1 +1 +1 S2
xS

3
x, S

2
x, S

3
x

Table A.3: Double Z error syndromes for [[7,1,3]] code

Syndrome
Double error type S1

x S2
x S3

x Siz Product of double error pairs
(Z1Z2),(Z5Z6),(Z4Z7) -1 -1 +1 +1 S1

zS
2
z , S

3
z , S

1
zS

2
zS

3
z

(Z1Z5),(Z2Z6),(Z3Z7) +1 +1 -1 +1 S1
zS

2
z , S

1
z , S

2
z

(Z1Z3),(Z5Z7),(Z4Z6) +1 -1 +1 +1 S1
z , S

1
zS

3
z , S

3
z

(Z1Z4),(Z3Z6),(Z2Z7) -1 +1 -1 +1 S1
zS

3
z , S

2
z , S

1
z , S

2
z

(Z1Z6),(Z3Z4),(Z2Z5) -1 -1 -1 +1 S1
zS

3
z , S

2
zS

3
z , S

1
zS

2
z

(Z1Z7),(Z2Z4),(Z3Z5) +1 -1 -1 +1 S1
zS

2
zS

3
z , S

1
z , S

2
zS

3
z

(Z2Z3),(Z4Z5),(Z6Z7) -1 +1 +1 +1 S2
zS

3
z , S

2
z , S

3
z

A.2.2 Steane [[7,1,3]] code

Steane code has following six stabilizers:

1. S1
x : X1X3X5X7

2. S2
x : X2X3X6X7

3. S3
x : X4X5X6X7

4. S1
z : Z1Z3Z5Z7

5. S2
z : Z2Z3Z6Z7

6. S3
z : Z4Z5Z6Z7

222

For double error correction, one can make Steane code behave similar to the degener-

ate codes; multiple double errors can cause same syndrome but they do not prevent us

from fixing the error. Table A.2 shows that each single syndrome value corresponds

to a set of three double errors called Clique of Benign Double Errors (CBDE). How-

ever notice that product of any two double errors in CBDE is either a X-stabilizer or

product of X-stabilizers, both of which leave original encoded state unchanged. For

example consider the first CBDE (X1X2),(X5X6),(X4X7) all of which give (-1,-1,+1)

when Z-stabilizers are measured. The product of (X1X2),(X5X6) is X1X2X5X6 =

S1
xS

2
x, that of (X5X6),(X4X7) is X4X5X6X7 = S3 and that of (X1X2),(X4X7) is

X1X2X4X7 = S1
xS

2
xS

3
x. This means that given a syndrome value, we can identify

corresponding CDBE and can correct for the double error by applying arbitrary

chosen double error from the set without actually identifying original double error.

Table A.3 is for double phase-flip error and constructed in the same way as that

for Table A.2 for double X-error. Based on the scheme described for X errors, reader

can verify that Z double errors can be corrected as well. Hence we have shown that

Steane [[7,1,3]] can correct for arbitrary double error. The key idea behind our

scheme is exploitation of induced degeneracy in the code for double errors.

A.2.3 Bacon-Shor [[9,1,3]] code

The Bacon-Shor (BS) code has following four stabilizers:

1. S1
x : X1X2X3X4X5X6

2. S2
x : X4X5X6X7X8X9

3. S1
z : Z1Z2Z4Z5Z7Z8

4. S2
z : Z2Z3Z5Z6Z8Z9

and gauge operators are shown in Table A.4. Recall that BS-code construction forces

gauge operators which act trivially on the code space. For correction, we convert

223

Table A.4: Gauge operators for [[9,1,3]] code

X-gauge operators Z-gauge operators
Gx1 Gx2 Gx3 Gz1 Gz2 Gz3

(X1X4) (X2X5) (X3X6) (Z1Z2) (Z4Z5) (Z7Z8)
(X1X7) (X2X8) (X3X9) (Z2Z3) (Z5Z6) (Z8Z9)
(X4X7) (X5X8) (X6X9) (Z1Z3) (Z4Z6) (Z7Z9)

double error into relevant gauge operator. For example an unknown double X error

can be converted into some X gauge operator and likewise for double Z error. In

Table A.5 we identify total of 27 possible X double errors, which can be clustered

into three sets, each containing 9 double errors. Similar to the case of Steane, each

set essentially forms a CBDE. In order to correct double X error, Z syndromes value

is determined and corresponding CBDE is identified. Error can be fixed by applying

arbitrarily chosen double error from the identified CBDE.

Consider CDBE for pS1
z , S

2
z q � p�1,�1q. Reader can verify that the product of

any two double errors in this clique will be one of theX-gauge operator in column Gx1

or Gx2 Table A.4 or a product of two gauge operators chosen from these columns. A

similar Table A.6 can be constructed for double Z error and it can easily be varified

that all 27 errors can be corrected using this scheme. Hence we have shown that

[[9,1,3]] code can correct for arbitrary double error because any pair of double errors

in CBDE forms a gauge operator.

224

Table A.5: Double X error syndromes for [[9,1,3]] code

Syndrome

Double error types S1
z S2

z Six
Product of double er-
ror pairs

(X1X2), (X1X5), (X1X8),
(X2X4), (X2X7), (X4X5),
(X4X8), (X5X7), (X7X8)

+1 -1 +1
Gx1 and Gx2 (Table
A.4)

(X1X3), (X1X6), (X1X9),
(X3X4), (X3X7), (X4X6),
(X4X9), (X6X7), (X7X9)

-1 -1 +1
Gx1 and Gx3 (Table
A.4)

(X2X3), (X2X6), (X2X9),
(X3X5), (X3X8), (X5X6),
(X5X9), (X6X8), (X8X9)

-1 +1 +1
Gx2 and Gx3 (Table
A.4)

Table A.6: Double Z error syndromes for [[9,1,3]] code

Syndrome

Double error types S1
x S2

x Siz
Product of double er-
ror pairs

(Z1Z4), (Z1Z5), (Z1Z6),
(Z2Z4), (Z2Z5), (Z2Z6),
(Z3Z4), (Z3Z5), (Z3Z6)

+1 -1 +1
Gz1 and Gz2 (Table
A.4)

(Z1Z7), (Z1Z8), (Z1Z9),
(Z2Z7), (Z2Z8), (Z2Z9),
(Z3Z7), (Z3Z8), (Z3Z9)

-1 -1 +1
Gz1 and Gz3 (Table
A.4)

(Z4Z7), (Z4Z8), (Z4Z9),
(Z5Z7), (Z5Z8), (Z5Z9),
(Z6Z7), (Z6Z8), (Z6Z9)

-1 +1 +1
Gz2 and Gz3 (Table
A.4)

225

Bibliography

Aaronson, S. and Gottesman, D. (2004), “Improved simulation of stabilizer circuits,”
Physical Review A, 70, 052328.

Aharonov, D. and Ben-Or, M. (1997), “Fault-tolerant quantum computation with
constant error Fault-tolerant quantum computation with constant error Fault-
tolerant quantum computation with constant error,” in Proceedings of the 29th
Annual Symposium on Theory of Computing, pp. 176–188.

Alicki, R., Lidar, D. A., and Zanardi, P. (2006), “Internal consistency of fault-tolerant
quantum error correction in light of rigorous derivations of the quantum Markovian
limit,” Physical Review A, 73, 052311.

Aliferis, P., Gottesman, D., and Preskill, J. (2005), “Quantum accuracy threshold
for concatenated distance-3 codes,” arXiv:quant-ph/0504218.

Andreev, K. and Racke, H. (2006), “Balanced Graph Partitioning,” Theory of Com-
puting Systems, 39, 929–939.

Bacon, D. (2003), “Decoherence, control, and symmetry in quantum computers,”
arXiv preprint quant-ph/0305025.

Bacon, D. (2006), “Operator quantum error-correcting subsystems for self-correcting
quantum memories,” Physical Review A, 73, 012340.

Balensiefer, S., Kregor-Stickles, L., and Oskin, M. (2005a), “An Evaluation Frame-
work and Instruction Set Architecture for Ion-Trap Based Quantum Micro-
Architectures,” SIGARCH Comput. Archit. News, 33, 186–196.

Balensiefer, S., Kreger-Stickles, L., and Oskin, M. (2005b), “QUALE: quantum ar-
chitecture layout evaluator,” in Proc. of the SPIE, vol. 5815, pp. 103–114.

Ballance, C., Harty, T., Linke, N., and Lucas, D. (2014), “High-fidelity two-
qubit quantum logic gates using trapped calcium-43 ions,” arXiv preprint
arXiv:1406.5473.

Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T.,
Mutus, J., Fowler, A., Campbell, B., et al. (2014), “Logic gates at the surface code

226

threshold: Superconducting qubits poised for fault-tolerant quantum computing,”
arXiv preprint arXiv:1402.4848.

Beckman, D., Chari, A. N., Devabhaktuni, S., and Preskill, J. (1996a), “Efficient
networks for quantum factoring,” Physical Review A, 54, 1034.

Beckman, D., Chari, A. N., Devabhaktuni, S., and Preskill, J. (1996b),
“Efficient networks for quantum factoring,” Phys. Rev. A, 54, 1034–1063,
http://arXiv.org/quant-ph/9602016.

Ben-Aroya, A. and Ta-Shma, A. (2011), “Approximate quantum error correction for
correlated noise,” Information Theory, IEEE Transactions on, 57, 3982–3988.

Benhelm, J., Kirchmair, G., Roos, C. F., and Blatt, R. (2008), “Towards fault-
tolerant quantum computing with trapped ions,” Nature Physics, 4, 463–466.

Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wootters, W. K.
(1993), “Teleporting an unknown quantum state via dual classical and Einstein-
Podolsky-Rosen channels,” Physical review letters, 70, 1895.

Bernstein, E. and Vazirani, U. (1993a), “Quantum complexity theory,” in Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing, pp. 11–20,
ACM.

Bernstein, E. and Vazirani, U. (1993b), “Quantum complexity theory,” in Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing, STOC ’93,
pp. 11–20, New York, NY, USA, ACM.

Blume-Kohout, R. (2010), “Optimal, reliable estimation of quantum states,” New
Journal of Physics, 12, 043034.

Bravyi, S. and Kitaev, A. (2005), “Universal quantum computation with ideal Clif-
ford gates and noisy ancillas,” Phys. Rev. A, 71, 022316.

Briegel, H., Dür, W., Cirac, J., and Zoller, P. (1998), “Quantum repeaters: The
role of imperfect local operations in quantum communication,” Physical Review
Letters, 81, 5932–5935.

Brown, K., Wilson, A., Colombe, Y., Ospelkaus, C., Meier, A., Knill, E., Leibfried,
D., and Wineland, D. (2011), “Single-qubit-gate error below 10- 4 in a trapped
ion,” Physical Review A, 84, 030303.

Calderbank, A. R. and Shor, P. W. (1996), “Good quantum error-correcting codes
exist,” Physical Review A, 54, 1098.

Chiribella, G., DallArno, M., DAriano, G. M., Macchiavello, C., and Perinotti, P.
(2011), “Quantum error correction with degenerate codes for correlated noise,”
Physical Review A, 83, 052305.

227

Cirac, J. I. and Zoller, P. (1995), “Quantum computations with cold trapped ions,”
Physical review letters, 74, 4091.

Clemens, J. P., Siddiqui, S., and Gea-Banacloche, J. (2004), “Quantum error correc-
tion against correlated noise,” Physical Review A, 69, 062313.

Crain, S., Mount, E., Baek, S., and Kim, J. (2014a), “Individual addressing of
trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam
steering system,” Applied Physics Letters, 105, 181115.

Crain, S., Mount, E., Baek, S.-Y., and Kim, J. (2014b), “Individual addressing of
trapped 171Y b� ion qubits using a microelectromechanical systems-based beam
steering system,” Appl. Phys. Lett., 105, 181115.

Crespi, A., Ramponi, R., Osellame, R., Sansoni, L., Bongioanni, I., Sciarrino, F.,
Vallone, G., and Mataloni, P. (2011), “Integrated photonic quantum gates for
polarization qubits,” Nature communications, 2, 566.

Cuccaro, S. A., Draper, T. G., Kutin, S. A., and Moulton, D. P. (2004), “A new
quantum ripple-carry addition circuit,” arXiv preprint quant-ph/0410184.

Dousti, M. J. and Pedram, M. (2012), “Minimizing the latency of quantum circuits
during mapping to the ion-trap circuit fabric,” in Proceedings of the Conference
on Design, Automation and Test in Europe, pp. 840–843, EDA Consortium.

Dousti, M. J. and Pedram, M. (2013), “Latency estimation for a quantum algorithm
mapped to a quantum circuit fabric,” in Proceedings of the 50th Annual Design
Automation Conference, p. 42, ACM.

Dousti, M. J., Shafaei, A., and Pedram, M. (2014), “Squash: a scalable quantum
mapper considering ancilla sharing,” in Proceedings of the 24th edition of the great
lakes symposium on VLSI, pp. 117–122, ACM.

Draper, T. G., Kutin, S. A., Rains, E. M., and Svore, K. M. (2006), “A logarithmic-
depth quantum carry-lookahead adder,” Quantum Inf. & Comput., 6, 351–369.

Duan, L.-M., Blinov, B. B., Moehring, D. L., and Monroe, C. (2004), “Scaling
Trapped Ions for Quantum Computation with Probabilistic Ion-Photon Mapping,”
Quant. Inf. Comp., 4, 165–173.

Einstein, A., Podolsky, B., and Rosen, N. (1935), “Can quantum-mechanical descrip-
tion of physical reality be considered complete?” Physical review, 47, 777.

Evans, Z., Stephens, A., Cole, J., and Hollenberg, L. (2007), “Error correction opti-
misation in the presence of X/Z asymmetry,” arXiv preprint arXiv:0709.3875.

228

Fowler, A. G. and Hollenberg, L. C. (2004), “Scalability of Shor’s algorithm with a
limited set of rotation gates,” Physical Review A, 70, 032329.

Fowler, A. G., Stephens, A. M., and Groszkowski, P. (2009), “High-threshold uni-
versal quantum computation on the surface code,” Physical Review A, 80, 052312.

Fowler, A. G., Mariantoni, M., Martinis, J. M., and Cleland, A. N. (2012a), “Surface
codes: Towards practical large-scale quantum computation,” Phys. Rev. A, 86,
032324.

Fowler, A. G., Whiteside, A. C., McInnes, A. L., and Rabbani, A. (2012b), “Topo-
logical code Autotune,” Physical Review X, 2, 041003.

Galiautdinov, A., Korotkov, A. N., and Martinis, J. M. (2012), “Resonator-zero-
qubit architecture for superconducting qubits,” Phys. Rev. A, 85, 042321.

Garcia, H. and Markov, I. (2013), “Quipu: High-performance simulation of quantum
circuits using stabilizer frames,” in Computer Design (ICCD), 2013 IEEE 31st
International Conference on, pp. 404–410.

Giles, B. and Selinger, P. (2013), “Exact synthesis of multiqubit Clifford+T circuits,”
Phys. Rev. A, 87, 032332.

Gottesman, D. (1997), “Stabilizer codes and quantum error correction,” arXiv
preprint quant-ph/9705052.

Gottesman, D. (1998a), “The Heisenberg representation of quantum computers,”
arXiv preprint quant-ph/9807006.

Gottesman, D. (1998b), “Theory of fault-tolerant quantum computation,” Phys. Rev.
A, 57, 127–137.

Gottesman, D. and Chuang, I. L. (1999), “Demonstrating the viability of universal
quantum computation using teleportation and single-qubit operations,” Nature,
402, 390 – 393.

Goudarzi, H., Dousti, M. J., Shafaei, A., and Pedram, M. (2014), “Design of a
universal logic block for fault-tolerant realization of any logic operation in trapped-
ion quantum circuits,” Quantum information processing, 13, 1267–1299.

Guise, N. D., Fallek, S. D., Stevens, K. E., Brown, K., Volin, C., Harter,
A. W., Amini, J. M., Higashi, R. E., Lu, S. T., Chanhvongsak, H. M., et al.
(2014), “Ball-grid array architecture for microfabricated ion traps,” arXiv preprint
arXiv:1412.5576.

Gutiérrez, M. and Brown, K. R. (2014), “Comparison of a quantum error correction
threshold for exact and approximate errors,” arXiv preprint arXiv:1501.00068.

229

Han, R., Ng, H. K., and Englert, B.-G. (2014), “Implementing a neutral-
atom controlled-phase gate with a single Rydberg pulse,” arXiv preprint
arXiv:1407.8051.

Hanneke, D., Home, J. P., Jost, J. D., Amini, J. M., Leibfried, D., and Wineland,
D. J. (2009), “Realization of a programmable two-qubit quantum processor,” Na-
ture Physics, 6, 13–16.

Hanson, R., Kouwenhoven, L., Petta, J., Tarucha, S., and Vandersypen, L. (2007),
“Spins in few-electron quantum dots,” Reviews of Modern Physics, 79, 1217.

Harty, T., Allcock, D., Ballance, C., Guidoni, L., Janacek, H., Linke, N., Stacey, D.,
and Lucas, D. (2014), “High-Fidelity Preparation, Gates, Memory, and Readout
of a Trapped-Ion Quantum Bit,” Physical review letters, 113, 220501.

Isailovic, N., Whitney, M., Patel, Y., and Kubiatowicz, J. (2008), “Running a quan-
tum circuit at the speed of data,” in ACM SIGARCH Computer Architecture News,
vol. 36, pp. 177–188, IEEE Computer Society.

J. Eisert, K. Jacobs, P. P. and Plenio, M. B. (2000), “Optimal local implementation
of non-local quantum gates,” Phys. Rev. A, 62.

Jiang, L., Taylor, J. M., Nemoto, K., Munro, W. J., Van Meter, R., and Lukin, M. D.
(2009), “Quantum repeater with encoding,” Phys. Rev. A, 79, 032325.

Juvan, M. and Mohar, B. (1992), “Optimal linear labelings and eigenvalues of
graphs,” Discrete Appl. Math., 36, 153–168.

Kielpinski, D., Monroe, C., and Wineland, D. (2002), “Architecture for a large-scale
ion-trap quantum computer,” Nature, 417, 709–711.

Kim, J. (2014), “Trapped Ions Make Impeccable Qubits,” Physics, 7, 119.

Kim, J. and Kim, C. (2009), “Integrated optical approach to trapped ion quantum
computation,” Quantum Inf. & Comput., 9, 181–202.

Kim, J., Nuzman, C., Kumar, B., Lieuwen, D., Kraus, J., Weiss, A., Lichtenwalner,
C., Papazian, A., Frahm, R., Basavanhally, N., Ramsey, D., Aksyuk, V., Pardo, F.,
Simon, M., Lifton, V., Chan, H., Haueis, M., Gasparyan, A., Shea, H., Arney, S.,
Bolle, C., Kolodner, P., Ryf, R., Neilson, D., and Gates, J. (2003), “1100 X 1100
port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photon.
Technol. Lett., 15, 1537 –1539.

Kitaev, A. Y. (1995), “Quantum measurements and the Abelian stabilizer problem,”
arXiv preprint quant-ph/9511026.

230

Kitaev, A. Y. (2003), “Fault-tolerant quantum computation by anyons,” Annals of
Physics, 303, 2–30.

Kleinjung, T., Aoki, K., Franke, J., Lenstra, A. K., Thomé, E., Bos, J. W., Gaudry,
P., Kruppa, A., Montgomery, P. L., Osvik, D. A., et al. (2010), “Factorization of a
768-bit RSA modulus,” in Advances in Cryptology–CRYPTO 2010, pp. 333–350,
Springer.

Kliuchnikov, V., Maslov, D., and Mosca, M. (2013), “Asymptotically Optimal Ap-
proximation of Single Qubit Unitaries by Clifford and T Circuits Using a Constant
Number of Ancillary Qubits,” Phys. Rev. Lett., 110, 190502.

Knill, E. (2004), “Fault-tolerant postselected quantum computation: Schemes,”
arXiv preprint quant-ph/0402171.

Knill, E., Laflamme, R., and Milburn, G. J. (2001), “A scheme for efficient quantum
computation with linear optics,” nature, 409, 46–52.

Knoernschild, C., Zhang, X. L., Isenhower, L., Gill, A. T., Lu, F. P., Saffman, M.,
and Kim, J. (2010), “Independent individual addressing of multiple neutral atom
qubits with a micromirror-based beam steering system,” Appl. Phys. Lett., 97,
134101.

Ladd, T., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., and O’Brien, J.
(2010a), “Quantum computers,” Nature, 464, 45–53.

Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., and OBrien,
J. L. (2010b), “Quantum computers,” Nature, 464, 45–53.

Laflamme, R., Miquel, C., Paz, J. P., and Zurek, W. H. (1996), “Perfect quantum
error correcting code,” Physical Review Letters, 77, 198.

Langer, C., Ozeri, R., Jost, J. D., Chiaverini, J., DeMarco, B., Ben-Kish, A.,
Blakestad, R., Britton, J., Hume, D., Itano, W., et al. (2005), “Long-lived qubit
memory using atomic ions,” Physical review letters, 95, 060502.

Lidar, D. A. and Brun, T. A. (2013), Quantum error correction, Cambridge Univer-
sity Press.

Loss, D. and DiVincenzo, D. P. (1998), “Quantum computation with quantum dots,”
Physical Review A, 57, 120.

Lu, F. and Marinescu, D. C. (2007), “Quantum Error Correction of Time-Correlated
Errors,” Quantum Information Processing, 6, 273–293.

231

Mariantoni, M., H., W., Yamamoto, T., Neeley, M., Bialczak, R. C., Chen, Y.,
Lenander, M., Lucero, E., O’Connell, A. D., Sank, D., Weides, M., Wenner, J.,
Yin, Y., Zhao, J., Korotkov, A. N., Cleland, A. N., and Martinis, J. M. (2011),
“Implementing the quantum von Neumann architecture with superconducting cir-
cuits,” Science, 334, 61–65.

Marx, R., Fahmy, A., Myers, J., Bermel, W., and Glaser, S. (2000), “Approaching
five-bit NMR quantum computing,” Physical Review A, 62, 012310.

Maslov, D., Falconer, S., and Mosca, M. (2007), “Quantum Circuit Placement: Op-
timizing Qubit-to-qubit Interactions through Mapping Quantum Circuits into a
Physical Experiment,” in Design Automation Conference, 2007. DAC ’07. 44th
ACM/IEEE, pp. 962 –965.

Maslove, D., Falconer, S., and Mosca, M. (2008), “Quantum circuit placement,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 27, 752–763.

Maunz, P., Olmschenk, S., Hayes, D., Matsukevich, D., Duan, L., and Monroe, C.
(2009), “Heralded quantum gate between remote quantum memories,” Physical
review letters, 102, 250502.

Mazzola, L., Piilo, J., and Maniscalco, S. (2010), “Sudden transition between classical
and quantum decoherence,” Physical review letters, 104, 200401.

Meier, A. M., Eastin, B., and Knill, E. (2012), “Magic-state distillation with the
four-qubit code,” arXiv preprint arXiv:1204.4221.

Metodi, T., Thaker, D., Cross, A., Chong, F., and Chuang, I. (2005), “A quantum
logic array microarchitecture: Scalable quantum data movement and computa-
tion,” in Proc. 38th Annual IEEE/ACM Internat. Symp. on Microarchitecture
(MICRO-38), pp. 12–23.

Metodi, T., Thaker, D., Cross, A., Chong, F., and Chuang, I. (2006), “Scheduling
physical operations in a quantum information processor,” in Proceedings of SPIE,
vol. 6244, pp. 210–221, Citeseer.

Monroe, C. and Kim, J. (2013), “Scaling the Ion Trap Quantum Processor,” Science,
339, 1164.

Monroe, C., Raussendorf, R., Ruthven, A., Brown, K. R., Maunz, P., Duan, L.-M.,
and Kim, J. (2014), “Large scale modular quantum computer architecture with
atomic memory and photonic interconnects,” Phys. Rev. A, 89, 022317.

Monz, T., Schindler, P., Barreiro, J., Chwalla, M., Nigg, D., Coish, W., Harlander,
M., Hänsel, W., Hennrich, M., and Blatt, R. (2011), “14-qubit entanglement:
Creation and coherence,” Physical Review Letters, 106, 130506.

232

Mount, E., Baek, S.-Y., Blain, M., Stick, D., Gaultney, D., Crain, S., Noek, R., Kim,
T., Maunz, P., and Kim, J. (2013), “Single qubit manipulation in a microfabricated
surface electrode ion trap,” New Journal of Physics, 15, 093018.

Nakamura, Y., Pashkin, Y. A., and Tsai, J. (1999), “Coherent control of macroscopic
quantum states in a single-Cooper-pair box,” Nature, 398, 786–788.

Negrevergne, C., Mahesh, T., Ryan, C., Ditty, M., Cyr-Racine, F., Power, W.,
Boulant, N., Havel, T., Cory, D., and Laflamme, R. (2006), “Benchmarking quan-
tum control methods on a 12-qubit system,” Physical review letters, 96, 170501.

Nielsen, M. A. and Chuang, I. L. (2000), Quantum computation and quantum infor-
mation, Cambridge university press.

Noek, R., Vrijsen, G., Gaultney, D., Mount, E., Kim, T., Maunz, P., and Kim, J.
(2013a), “High speed, high fidelity detection of an atomic hyperfine qubit,” Optics
letters, 38, 4735–4738.

Noek, R., Kim, T., Mount, E., Baek, S.-Y., Maunz, P., and Kim, J. (2013b), “Trap-
ping and cooling of 174Yb+ ions in a microfabricated surface trap,” Journal of
the Korean Physical Society, 63, 907–913.

Olmschenk, S., Younge, K. C., Moehring, D. L., Matsukevich, D. N., Maunz, P.,
and Monroe, C. (2007), “Manipulation and detection of a trapped Yb� hyperfine
qubit,” Phys. Rev. A, 76, 052314.

Patel, Y. (2010), “Communication and Control for Quantum Circuits,” .

Preskill, J. (1998a), “Lecture notes for physics 229: Quantum information and com-
putation,” California Institute of Technology.

Preskill, J. (1998b), “Reliable quantum computers,” Proceedings of the Royal Society
of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 385–
410.

Saffman, M. and Walker, T. (2005), “Analysis of a quantum logic device based on
dipole-dipole interactions of optically trapped Rydberg atoms,” Physical Review
A, 72, 022347.

Schlosshauer, M. A. (2007), Decoherence: and the quantum-to-classical transition,
Springer Science & Business Media.

Schwemmer, C., Tóth, G., Niggebaum, A., Moroder, T., Gross, D., Gühne, O., and
Weinfurter, H. (2014), “Experimental comparison of efficient tomography schemes
for a six-qubit state,” Physical review letters, 113, 040503.

233

Shabani, A., Kosut, R., Mohseni, M., Rabitz, H., Broome, M., Almeida, M., Fedrizzi,
A., and White, A. (2011), “Efficient measurement of quantum dynamics via com-
pressive sensing,” Physical review letters, 106, 100401.

Shor, P. (1997), “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM Journal on Computing, 26, 1484–
1509.

Shor, P. W. (1995), “Scheme for reducing decoherence in quantum computer mem-
ory,” Physical review A, 52, R2493.

Steane, A. M. (1996), “Error correcting codes in quantum theory,” Physical Review
Letters, 77, 793–797.

Suchara, M., Faruque, A., Lai, C.-Y., Paz, G., Chong, F. T., and Kubiatowicz, J.
(2013a), “Comparing the Overhead of Topological and Concatenated Quantum
Error Correction,” arXiv preprint arXiv:1312.2316.

Suchara, M., Kubiatowicz, J., Faruque, A., Chong, F. T., Lai, C.-Y., and Paz,
G. (2013b), “QuRE: The Quantum Resource Estimator Toolbox,” in Computer
Design (ICCD), 2013 IEEE 31st International Conference on, pp. 419–426, IEEE.

Svore, K., Cross, A., Aho, A., Chuang, I., and Markov, I. (2004), “Toward a software
architecture for quantum computing design tools,” in Proceedings of the 2nd In-
ternational Workshop on Quantum Programming Languages (QPL), pp. 145–162.

Svore, K. M., Aho, A. V., Cross, A. W., Chuang, I., and Markov, I. L. (2006a), “A
Layered Software Architecture for Quantum Computing Design Tools,” Computer,
39, 74–83.

Svore, K. M., Divincenzo, D. P., and Terhal, B. M. (2006b), “Noise threshold
for a fault-tolerant two-dimensional lattice architecture,” arXiv preprint quant-
ph/0604090.

Thaker, D., Metodi, T., Cross, A., Chuang, I., and Chong, F. (2006), “Quantum
memory hierarchies: Efficient designs to match available parallelism in quantum
computing,” in ACM SIGARCH Computer Architecture News, vol. 34, pp. 378–
390, IEEE Computer Society.

Unruh, W. G. (1995), “Maintaining coherence in quantum computers,” Physical
Review A, 51, 992.

Van Meter, R. and Horsman, C. (2013), “A blueprint for building a quantum com-
puter,” Communications of the ACM, 56, 84–93.

Van Meter, R. and Itoh, K. M. (2005), “Fast quantum modular exponentiation,”
Phys. Rev. A, 71, 052320.

234

Van Meter, R., Itoh, K. M., and Ladd, T. D. (2006), “Architecture-Dependent Ex-
ecution Time of Shor’s Algorithm,” in Proc. Int. Symp. on Mesoscopic Supercon-
ductivity and Spintronics (MS+S2006), available as http://arxiv.org/abs/quant-
ph/0507023.

Van Meter, R., Munro, W. J., Nemoto, K., and Itoh, K. M. (2008), “Arithmetic
on a Distributed-memory Quantum Multicomputer,” J. Emerg. Technol. Comput.
Syst., 3, 2:1–2:23.

Vandersypen, L., Steffen, M., Breyta, G., Yannoni, C., Sherwood, M., and Chuang,
I. (2001), “Experimental realization of Shor’s quantum factoring algorithm using
nuclear magnetic resonance,” Nature, 414, 883–887.

Vedral, V., Barenco, A., and Ekert, A. (1996a), “Quantum networks for elemen-
tary arithmetic operations,” Phys. Rev. A, 54, 147–153, http://arXiv.org/quant-
ph/9511018.

Vedral, V., Barenco, A., and Ekert, A. (1996b), “Quantum Networks for Elementary
Arithmetic Operations,” Phys. Rev. A, 54, 147.

Viamontes, G. F., Markov, I. L., and Hayes, J. P. (2003), “Improving gate-level
simulation of quantum circuits,” Quantum Information Processing, 2, 347–380.

Viamontes, G. F., Markov, I. L., and Hayes, J. P. (2009), Quantum circuit simulation,
Springer Science & Business Media.

Whitney, M., Isailovic, N., Patel, Y., and Kubiatowicz, J. (2007), “Automated gen-
eration of layout and control for quantum circuits,” in Proc. of the 4th Internat.
Conf. on Computing Frontiers, pp. 83–94.

Whitney, M. G., Isailovic, N., Patel, Y., and Kubiatowicz, J. (2009), “A fault tol-
erant, area efficient architecture for Shor’s factoring algorithm,” ACM SIGARCH
Computer Architecture News, 37, 383–394.

Wootters, W. K. and Zurek, W. H. (1982), “A single quantum cannot be cloned,” .

Zeng, B., Cross, A., and Chuang, I. L. (2011), “Transversality versus universality for
additive quantum codes,” Information Theory, IEEE Transactions on, 57, 6272–
6284.

Zhou, X., Leung, D. W., and Chuang, I. L. (2000), “Methodology for Quantum Logic
Gate Construction,” Phys. Rev. A, 62, 052316.

Zhu, S., Monroe, C., and Duan, L. (2006), “Trapped ion quantum computation with
transverse phonon modes,” Physical review letters, 97, 50505.

Zurek, W. H. (2003), “Decoherence and the transition from quantum to classical–
REVISITED,” arXiv preprint quant-ph/0306072.

235

Biography

Muhammad Ahsan was born on July 28, 1984 in Lahore, Pakistan. He received his

primary education from Crescent Model Higher Secondary School. He completed

his intermediate (high school) degree from the Government College and University,

Lahore. His B.Sc. degree was earned in Electrical Engineering from University of

Engineering and Technology, Lahore. He graduated from Duke university, USA with

Masters degree and is currently enrolled as a Ph.D. candidate at the same institute.

His general research interests include quantum computing and computer architecture.

After receiving his Ph.D. degree he will work for some industrial research lab to obtain

further training in research.

236

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 Why Quantum Computation?
	1.2 Quantum Noise: The Main Enemy of Quantum Computer
	1.2.1 How Noise Affects Correctness of Computation
	1.2.2 Achieving Tolerance Against Noise
	1.2.3 Resource Overhead in Fault Tolerant Quantum Computing

	1.3 Quantum Computer Architecture
	1.3.1 Achieving Fault Tolerance in Quantum Architecture
	1.3.2 The Trade-offs between Resource and Performance
	1.3.3 Simultaneous Reduction of Execution Time and Failure Probability

	1.4 Performance Simulation and Modeling Quantum Computers
	1.4.1 Why Performance Simulation?
	1.4.2 Main Components of the Performance Simulation

	1.5 The Contribution of the Thesis
	1.5.1 A New Performance Simulation Tool
	1.5.2 The Summary of New Research Problems

	1.6 Summary

	2 Basics of Quantum Computing
	2.1 Qubits
	2.2 Quantum Gates and Measurement
	2.2.1 Single-qubit Gates
	2.2.2 Multi-qubit Gates
	2.2.3 Quantum Measurement
	2.2.4 Classically Controlled Quantum Gates
	2.2.5 Sample Quantum Circuit: Quantum Teleportation

	2.3 Universal Quantum Computation
	2.4 Quantum Noise
	2.5 Fault-tolerant Quantum Circuits
	2.5.1 The Choice of Quantum Error Correcting Code
	2.5.2 Hamming Code
	2.5.3 Quantum CSS Codes
	2.5.4 Stabilizer description of Steane code
	2.5.5 Fault-tolerant gates in Steane code
	2.5.6 Concatenated Quantum Error Correction

	2.6 Summary

	3 Trapped-Ion Quantum Hardware
	3.1 Introduction to the Trapped-Ion Quantum Computer
	3.2 Architectures for Trapped-Ion Quantum Computers
	3.2.1 Why quantum architecture?
	3.2.2 Brief Survey of Trapped-Ion Quantum Computers
	3.2.3 Feasibility of Quantum Architecture

	3.3 MUSIQC Hardware
	3.4 Architecture Support in MUSIQC Hardware
	3.5 Summary

	4 Our Design and Performance Simulation Tool Box
	4.1 Introduction to the Design and Performance Simulation
	4.1.1 Motivation Behind the Simulation
	4.1.2 Deficiencies in the prior tools
	4.1.3 Unique features of our tool set

	4.2 Brief Survey of Prior Tools or Infrastructures
	4.3 Our Design and Performance Simulation Tool Box
	4.4 Fault-Tolerant Circuit Generator
	4.5 Low Level Mapper
	4.5.1 Qubit Partitioning Problem Definition
	4.5.2 Qubit Placement Problem Definition

	4.6 Low Level Scheduler
	4.7 Low Level Error Analyzer
	4.8 Tile Database
	4.9 Quantum Application Circuit Generator
	4.10 Brief description of basic Architecture model in ADPA
	4.11 High Level Mapper
	4.12 High Level Scheduler
	4.12.1 Dynamic Resource Allocation in Cross-Layer Scheduling
	4.12.2 The Correctness and the Optimality of the Scheduler

	4.13 High Level Error Analyzer
	4.14 Performance Metrics Decomposer
	4.15 Visualizer
	4.16 Summary

	5 Performance Simulation based on Hardware Resources Constraints
	5.1 Motivation of Study
	5.2 Hardware, Architecture Model and Definitions
	5.3 Tool Components and Overall Design Flow
	5.3.1 Mapping
	5.3.2 Scheduling
	5.3.3 Quantifying Architecture Support for Fault-tolerance

	5.4 Simulation of Bernstein-Vazirani Algorithm
	5.4.1 Simulation Results
	5.4.2 Analysis of Resource Reduction

	5.5 Discussions
	5.5.1 Tool Testing, Verification and Validation
	5.5.2 Running Time and Scalability of the Tool

	5.6 Summary

	6 Optimization of a Quantum Computer Architecture
	6.1 Motivation of Study
	6.2 Quantum Hardware and Architecture Models
	6.2.1 Quantum Hardware Model
	6.2.2 Quantum Architecture Model
	6.2.3 Error Model and Baseline Device Parameters
	6.2.4 Benchmark Application Algorithm

	6.3 Tool Description
	6.4 Simulation Results
	6.4.1 Searching in the Architecture Space
	6.4.2 Selecting an Architecture
	6.4.3 Improving Performance through Device Parameters

	6.5 Summary

	7 Designing a Million-Qubit Quantum Computer
	7.1 Motivation of Study
	7.2 Quantum Circuits Revisited
	7.2.1 Universal Quantum Gates for the Steane code
	7.2.2 Benchmark Circuits

	7.3 Quantum Hardware and Quantum Architecture Models
	7.3.1 Quantum Hardware Model
	7.3.2 Quantum Architecture Model

	7.4 Tool Description
	7.4.1 Tool Validation and Performance

	7.5 Simulation Results
	7.5.1 Resource-Performance Scalability
	7.5.2 Resource-Performance Trade-offs
	7.5.3 Performance Scaling under Limited Resources
	7.5.4 Design Optimization by Tuning Device Parameters

	7.6 Conclusion

	8 Conclusion and Future Work
	8.1 Summary of Important Results
	8.2 Directions for Future Research
	8.2.1 Introducing Heuristics in Searching Design Space
	8.2.2 Mapping and Scheduling Algorithms
	8.2.3 Support for Other Error Models
	8.2.4 Improving Models of Physical Device Components
	8.2.5 Support for Multiple Quantum Technologies
	8.2.6 Support for Multiple Error-correcting Codes

	8.3 Summary and Final Word

	A Bimodal Error Correction
	A.1 Condition for Quantum Error Correction
	A.2 Double Error Correction
	A.2.1 The [[3,1,3]] code
	A.2.2 Steane [[7,1,3]] code
	A.2.3 Bacon-Shor [[9,1,3]] code

	Bibliography
	Biography

